

12-23 July 2021

INTRODUCTION

- One of the primary objectives of the GRAPES-3 experiment is to search for the cosmic ray sources.
- Cosmic ray sources can be detected by detecting the γ -rays travelling from the sources.

tion is required to detect the Defic tiny flux of γ -rays. • Absolute angular resolution can be obtained by observing the shadow of the Moon. Δ -40 -20 0 -100 --80 --60 60 **X** (m) **BACKGROUND STUDY** • Total 6 fake-Moon regions were combined. • Each fake-Moon position is at 10° offset from the Moon successively.

- An excellent angular resolu-

GRAPES-3 EXPERIMENT

- GRAPES-3 (Gamma Ray Astronomy at PeV EnergieS phase-3) is an Extensive Air-shower (EAS) array experiment ($11.4^{\circ}N$, $76.7^{\circ}E$, $2200 \ m \ asl$).
- Scintillator array [2]: 400 (1 m^2 each) detectors (covering an area of 25000 m^2 .
- Muon telescope [3] (\Box): 560 m^2 area.
- The dashed line represents the fiducial area.
- Measures cosmic rays & γ -rays at TeV-PeV energies.

DATA SELECTION

The particle densities recorded in the scintillator detector are used to fit the lateral density profile of the air shower with the well-known Nishimura-Kamata-Greisen (NKG) function.

- 3 years of data used (January 1, 2014 to December 31, 2016).
- Successful NKG Fit events.
- Shower cores should be within fiducial area.
- Age parameter between 0.2-1.8.
- Zenith angle below 45°

REFERENCES

- [1] G. W. Clark, Phys. Rev. 108, 450 (1957).
- [2] S.K. Gupta et al., Nucl. Instr. Meth. A 540 (2005) 311-323.
- [3] Y. Hayashi et al., Nucl. Instr. Meth. Phys. A 545 (2005) 643-657.

ICRC 2021 Measurement of the improved angular resolution of GRAPES-3 EAS array by the observation of the Moon shadow

Diptiranjan Pattanaik, TIFR-Mumbai & Utkal University-Bhubaneswar, On behalf of GRAPES-3 collaboration

• The relative deficit is then calculated by,

$$\frac{\Delta N_i}{\langle N \rangle} = \frac{N_i^{on} - \langle N_i^{off} \rangle}{\langle N_i^{off} \rangle}$$

where, N_i^{on} , is the Number of events along Moon in the i^{th} bin. $\langle N_i^{off} \rangle$ is the avg. number of events from fake-Moon positions.

• The relative deficit profiles is then fitted with a Gaussian function given by,

$$N(\psi) = N_0 \frac{\psi_M^2}{2\sigma_\psi} e^{-\frac{\psi^2}{2\sigma_\psi^2}}$$

where, σ_{ψ} is the angular resolution and ψ is the incident angle from the direction of the Moon.

COSMIC RAY SHADOW OF THE MOON

ANGULAR RESOLUTION).6⊦

resolution $1.01^{\circ} \pm 0.08^{\circ}$ $0.98^{\circ} \pm 0.08^{\circ}$ $0.88^{\circ} \pm 0.09^{\circ}$	deficit (%) 2.5 ± 0.5 3.0 ± 0.6 4.0 ± 1.6	11.2σ 11.3σ
$1.01^{\circ} \pm 0.08^{\circ}$ $0.98^{\circ} \pm 0.08^{\circ}$ $0.88^{\circ} \pm 0.09^{\circ}$	2.5 ± 0.5 3.0 ± 0.6 4.0 ± 1.6	11.2σ 11.3σ
$0.98^{\circ} \pm 0.08^{\circ}$ $0.88^{\circ} \pm 0.09^{\circ}$	3.0 ± 0.6	11.3σ
$0.88^{\circ} + 0.09^{\circ}$	10 ± 16	0 -
	4.0 ± 1.0	$\mathfrak{d}.\mathfrak{I}\sigma$
$0.54^\circ \pm 0.09^\circ$	10 ± 2.0	6.6σ
$0.37^{\circ} \pm 0.06^{\circ}$	15 ± 5.1	5.0σ
$0.35^\circ \pm 0.08^\circ$	19 ± 6.1	3.5σ
$0.23^{\circ} \pm 0.08^{\circ}$	40 ± 12	2.8σ
() () () () () () () () () () () () () ($0.54^{\circ} \pm 0.09^{\circ}$ $0.37^{\circ} \pm 0.06^{\circ}$ $0.35^{\circ} \pm 0.08^{\circ}$ $0.23^{\circ} \pm 0.08^{\circ}$ Significance of	$\begin{array}{ll} 0.54^{\circ} \pm 0.09^{\circ} & 10 \pm 2.0 \\ 0.37^{\circ} \pm 0.06^{\circ} & 15 \pm 5.1 \\ 0.35^{\circ} \pm 0.08^{\circ} & 19 \pm 6.1 \\ 0.23^{\circ} \pm 0.08^{\circ} & 40 \pm 12 \end{array}$ Significance of detection

SUMMARY AND CONCLUSION

• The angular resolution of the GRAPES-3 array has been obtained to be $\sim 1^{\circ}$ above 5 TeV with > 11.2 σ . • The angular resolution further improves with increase in energy.

• Better angular resolution at higher energies will help us to search for point sources of γ -rays.

• With this result, we have attempted to detect the multi-TeV γ -rays from the Crab Nebula.

SUMMARY OF THE FIT