

Lateral density distributions of muons and electrons EAS from the KASCADE-Grande data for different zenith angle intervals.

D. Rivera-Rangel*, J.C. Arteaga-Velázquez Universidad Michoacana, Inst. Física y Matemáticas, Morelia, México. *Speaker

ICRC 2021

THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

37th International Cosmic Ray Conference 12–23 July 2021

Test of high-energy hadronic models D. Rivera Rangel

Motivation

Test of high-energy hadronic models D. Rivera Rangel

KASCADE-Grande experiment

www.iap.kit.edu/kascade KASCADE Area: 200x200 m² 252 e/γ detectors (scintillator) 192 u detectors. Central Detector. Karlsruher Institut für Technologie Calorimeter. Karlsruhe, Germany. Muon Tracking detector. 110 m a.s.l., 49°N, 8°E Observables: $N_{e}, N_{\mu}, N_{hadrons}$ $E=10^{14}-10^{17} eV$ **GRANDE** detector: • Area: 0.5 km² A_{detector}: 10 m² 37 detector stations^{ch}

- Plastic Scintillators.
- Separation: 137 m
- Extend detection energy to 1 EeV.
- Hexagonal clusters of 7 detectors.

Test of high-energy hadronic models D. Rivera Rangel 37 ICRC

W.D. Apel, et al., Nuclear instruments in physics Research. 2010.

Shower size reconstruction

The number of muons has to be estimated

The total number of muons N $_{\mu}$ in the shower disk is derived from a maximum likelihood estimation to to the local muon data measured with KASCADE.

$$\rho_{\mu}(r) = N_{\mu}f(r)$$

The lateral distribution function for the fit is a Lagutin-Raikin function with a fix shape. It is derived from MC simulations using CORSIKA.

Particle density estimation

- n_j is the number of particles measured in one detector inside a ring of radius r_i.
- A_j is the sensitive area of the detector inside a ring of radius r_i.
- r_i is the radius of the ith ring.

Selection Cuts

- → Fiducial Area $x \in [-430m, -40m]$ $y \in [-560m, 25m]$ $r \in [150m, 650m]$
- Cuts on the direction of arrival angle (Use only the data that passed the selection)
 - Acceptance 656.902 m²*sr
 - Three intervals of equal acceptance.
 - [0°,21.78°]
 - [21.78°, 31.66°]
 - [31.66°, 40°]
- Cuts over the number of charged particles:
 - N_{ch} divided in intervals that reproduce the energy of 10 PeV, 100 PeV and 1 EeV using a lineal relation.
 - The charged particle range is subdivided depending on the zenith angle
- → Cuts over the trigger.
 - All the stations in the cluster detects
- Maximum detector efficiency.

¡Reducing the systematic error!

Hadronic interaction model tests

The experimental results are compared with the predictions of the models for H and Fe primaries.

Monte Carlo simulation

CORSIKA

CORSIKA v 7.5

GEANT 4 Detector simulation

Spectrum index: -2 Reweight to simulate spectral index:-3

Low Energies $E_h < 200 \, GeV$ **FLUKA**

High Energies **POST-LHC**

QGSJET-II-04 * Calibrated with LHC data.

EPOS LHC

SIBYLL 2.3

SIBYLL 2.3c

★ A bigger number of muons than the prediction of QGSJET-II-02 is generated.

★ No-lineal and nuclear effects are considered.

Results: Electron density data

Test of high-energy hadronic models D. Rivera Rangel

Results: Electron density data

Test of high-energy hadronic models D. Rivera Rangel

Results: Electron density data

Test of high-energy hadronic models D. Rivera Rangel

Results: Muon density data

Results: Muon density data

Test of high-energy hadronic models D. Rivera Rangel

Results: Muon density data

Test of high-energy hadronic models D. Rivera Rangel

Conclusions and final remarks

- ρ_e seems to be well described by the hadronic interaction models for E=10 PeV-1 EeV. However, SIBYLL 2.3 c shows a slight difference with the data in the region of $E \ge 100$ PeV and r < 200 m for the most inclined showers.
- On the other hand ρ_{μ} shows discrepancies between data and the predictions.
- Muon densities are steeper than the predictions from the hadronic interaction models above 100 PeV.
- For vertical EAS, EPOS-LHC seems to produce more muons than observed in data for r > 500 m.
- In addition, EPOS-LHC, QGSJET-II-04, SIBYLL 2.3 and SIBYLL 2.3 c do not describe the zenith angle evolution of the muon measurements: the cosmic ray composition seems to be heavier at large zenith angles.