

## A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower Universality

ICRC2021 | CRI | Cosmic Ray Indirect

ONLINE ICRO

**Pierpaolo SAVINA** for the **Pierre Auger Collaboration** 

#### **Motivations**



#### How to recognize photon-induced showers



P. Savina for the Pierre Auger Collaboration – July 2021 – ICRC2021 – Cosmic Ray Indirect (CRI)

20

10

3

x10<sup>10</sup>

4

3

Altitude (km)

#### How to recognize photon-induced showers



#### Surface Detector (SD)

- Ground Array of 1600 Water Chercenkov Detector, separated by 1500 m;
- Covering an area of 3000 m<sup>2</sup>
- Sampling the secondary particle that reach the ground
- Duty cycle of 100 %

# **The Pierre Auger**

**Hybrid design** combining the FD and the SD measurements (improved geometry reconstruction)

**Observatory** 

#### Fluorescence Detector (FD)

- 24 Telescopes overlook the array from 4 sites
- Measuring light produced by the deexcitation of air nitrogen molecules
- Duty cycle: only moonless
   nights



P. Savina for the Pierre Auger Collaboration - July 2021 - ICRC2021 - Cosmic Ray Indirect (CRI)

at 1400 m a.s.l.

Mendoza (Argentina)

#### Universality-based description of the Auger SD signals

**Universality**: distributions of the secondary particles depend only on a few parameters: energy and stage of shower evolution and geometry

Model of the SD signal in a station derived from the distribution of the secondary particle at the ground



#### **Analysis Technique**

Matching of predicted signal ( $S_{pred}$ ) from universality and hybrid event info, with the reconstructed signal ( $S_{rec}$ ) from data allows to obtain relative number of muons ( $F_{\mu}$ ) even in a single station



# $F_{\mu}$ extrapolated from the signal of a single station by requiring $S_{rec} = S_{pred}$ .

#### Validation of F<sub>µ</sub> reconstruction



• Universality method using Monte Carlo shower parameters (shower to shower and signal fluctuations)

• Universality method using hybrid reconstructed parameters (shower to shower, signal and hybrid reconstruction fluctuations)

#### **Combining X**<sub>max</sub> and $F_{\mu}$ in a Fisher Linear Discriminant



### Modeling the expected background



**1. Log-parabolic** functional form from proton simulations

2. Fit to the burnt sample for a data-driven parametrization of the expected background.

**3.** Rescale the **normalization** to the **number of events in the full data sample** (shaded area shows uncertainties).

Median of the photon distribution derived as photon selection cut from the study of the background extrapolation.

Photons identified as excess with respect to the expected background

#### **Unblinding of the data**



# estimated events above median:  $N_{exp}(E > 10^{18.0} eV) = 30 \pm 16$ 

# Candidates found: N<sub>obs</sub>(E > 18.0 eV) = 22

Median of the photon distribution derived as photon selection cut from the study of the background extrapolation.

Photons identified as excess with respect to the expected background

#### The most peculiar event





Claim for a photon observation **not possible** from a statistical point of view.

#### **Upper Limits to the UHE photon flux**



#### Conclusions

- New hybrid analysis technique above 1 EeV Energy,  $X_{max}$  and geometry from the hybrid reconstruction  $F_{\mu}$  derived from SD signals exploiting Universality
- Hybrid data 01/01/05–31/12/17:
   22 photon candidates between above 1 EeV
   30 ± 16 expected from the background
- strictest limits on the UHE photon flux above E > 10<sup>18</sup> eV
- start constraining the most optimistic models of cosmogenic photon production by protons
- Mass and lifetime of SHDM particles constrained

## Upper limits calculation: hybrid photon exposure



#### **Upper limits calculation: results**

| $E_{\gamma}^0$ [EeV] | $N_b(E_{\gamma} > E_{\gamma}^0)$ | $N_{\gamma}(E_{\gamma}>E_{\gamma}^{0})$ | $N_{\gamma}^{95\%}(E_{\gamma}>E_{\gamma}^{0})$ | $ \mathscr{C}_{\gamma}^{\text{weighted}}(E_{\gamma} > E_{\gamma}^{0}) $ [km <sup>2</sup> sr yr] | $\begin{split} \Phi_{\gamma}^{95\%}(E_{\gamma}>E_{\gamma}^{0}) \\ [\mathrm{km^{-2}\ sr^{-1}\ yr^{-1}}] \end{split}$ |
|----------------------|----------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1.0                  | $30 \pm 15$                      | 22                                      | 23.38                                          | 579                                                                                             | 0.0403                                                                                                              |
| 2.0                  | $6\pm 6$                         | 2                                       | 9.53                                           | 840                                                                                             | 0.0113                                                                                                              |
| 3.0                  | $0.7 \pm 1.9$                    | 0                                       | 3.42                                           | 976                                                                                             | 0.0035                                                                                                              |
| 5.0                  | $0.06\pm0.25$                    | 0                                       | 2.59                                           | 1141                                                                                            | 0.0023                                                                                                              |
| 10.0                 | $0.02\pm0.06$                    | 0                                       | 2.62                                           | 1263                                                                                            | 0.0021                                                                                                              |

| Systematic uncertainties | s on the upper limits: |
|--------------------------|------------------------|
|--------------------------|------------------------|

- reconstructed hybrid parameters (energy, X<sub>max</sub>)
- unknown photon spectral index
- hadronic model (not accounted yet)

| Eºɣ[EeV]                                   | 1    | 2    | 3 | 5 | 10 |
|--------------------------------------------|------|------|---|---|----|
| E (± 14%)                                  | ~25% | ~10% | - | - | -  |
| X <sub>max</sub> (± 10 g/cm <sup>2</sup> ) | ~15% | -    | - | - | -  |
| Γ = 1.5                                    | ~15% | ~15% | - | - | -  |
| Γ = 2.5                                    | ~20% | ~20% | - | - | -  |

#### Characterization of the candidates



#### Significance and "look-elsewhere" effect



*Local* significance quantified simulating 2000 proton events with same energy and geometry of the candidate.

Local significance above  $3.5\sigma$ 

Global p-value accounts for the look-elsewhere effect

Generated 100000 realizations of the data samples according to the extrapolated background.

Global p-value found: ~25%

#### **Physics implications**



From the absence of photons constraints, on the mass  $M_X$  and lifetime  $\tau_X$  can be inferred.

The strongest constrain over the whole mass range is  $\tau_X > 3 \times 10^{22}$  yr at  $M_X \approx 10^{20}$  eV.