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The Neural Network

Ultra-High Energy Cosmic Rays with Application to data

The Pierre Auger Observatory

* The Neural Network is based on a Recurrent Neural Network (RNN) Example of a predicted signal in data

* RNNs have a memory mechanism which makes them well suited for time series
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* The muon component is an interesting physical observable because it gives us hints about the mass
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What do we do? We train a neural network on simulations done with EPOS-LHC to predict the muon iz (0] iz (0] dented performance regarding the estimation of the primary mass on an event-by-event basis

signal The details of this work can be fonud in arXiv:2103.11983 (accepted for publication in JINST)
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