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The Pierre Auger Observatory and the Surface Detector (SD)

The Pierre Auger Observatory
e Hybrid detector: Surface Detector (SD) and Fluorescence Detector (FD)
e SD: 1660 surface detector stations located in a triangular array covering 3000 km?

® FD: The array is overlooked by 27 fluorescence telescopes

The Surface Detector
® Measures the arrival time of secondary particles of the shower at the ground
® These particles emit Cherenkov radiation in water that can be detected with photomultiplier tubes

e Duty cycle ~ 100%
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The Muon Component

The total signal has contributions from the muon and electromagnetic component (e~, et and )
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What do we do?

We train a neural network to predict the muon signal =~ *
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® The NN takes as input the total signal and predicts the muon signal

® The bias is close to 0 and RMS is between 1 and 2 VEMs (Vertical Equivalent Muons). The
performance has been studied as a function of sec # and primary energy

e Similar performance when tested on simulations done with QGSJetll-04 and Sibyll 2.3




Application to Data

® We have tested our results on Data
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The predictions agree with expected
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Points: NN results from Auger data

Lines: Fits using AGASA paremeterizations




