

Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory

Jakub Vícha^a for the Pierre Auger Collaboration^b

^a Institute of Physics of the Czech Academy of Sciences, Prague ^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

vicha@fzu.cz

14th July 2021

Hybrid detection at the Pierre Auger Observatory

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

distance to axis [m]

Mass composition & tests of hadronic interactions

PIERRE

Deficit of simulated muon signal: previous analyses in Auger

1) Mass composition is inferred from X_{max}

measurements using the nominal X_{max} predictions of hadronic interaction models

2) Discrepancy in muon content at ground

between simulations and data is evaluated using the inferences on the mass composition from the X_{max} analysis

This work

Global fit of observed [X_{max} ,S(1000)] distributions with free mass composition and adjustments of MC predictions **not only to hadronic signal but also to X**_{max}

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

Motivations for adjustments of MC predictions

- Properties of **4-component shower universality**: [Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]
 - $S(1000) = S_{Had} + S_{em}$
 - S_{em} very universal
 - Scale of <X_{max}> and S_{Had} (θ)

 (normalization and attenuation of S_{Had}) are the
 main differences between model predictions
 that are roughly primary and energy independent
- Not-accounted higher-order model differences:
 - fluctuations of X_{max} and S(1000)
 - mass dependence of R_{Had} (0), ΔX_{max}
 - etc.

ad-hoc adjustments

$$X_{max} \rightarrow X_{max} + \Delta X_{max}$$

 $S_{Had}(\theta) \rightarrow S_{Had}(\theta) \cdot R_{Had}(\theta)$

37th ICRC 2021

Global fit method

Simultaneous likelihood ratio fit of two-dimensional distributions of X_{max} and S(1000) in 5 zenith-angle bins with MC templates for combinations of four primary nuclei (p,He,O,Fe)

MC templates: from ~15k showers per primary and model (EPOS-LHC, QGSJet II-04, Sibyll 2.3d)

- Freedom in X_{max} (ΔX_{max}) and S(1000) ($R_{Had}(\theta)$) and primary fractions
- Change of S_{Had} and S_{em} due to $\Delta X_{\text{max}} incorporated$
- Degeneracy between mass
 composition and ΔX_{max}
 reduced due to the correlation
 between S(1000) and X_{max}
 [Phys.Lett. B762 (2016) 288]

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

PIERRE

Measured data

2297 high-quality showers for $\log_{10}(E_{FD} [eV]) = 18.5-19.0, \theta < 60^{\circ}$

Event selection according to [Phys. Rev. D 90 (2014) 122005, PoS(ICRC19)482] and [Phys. Rev. D 102 (2020) 062005]

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

6/15

EPOS-LHC without any adjustment to MC predictions

PIERRE AUGER OBSERVATORY

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

37th ICRC 2021

EPOS-LHC predictions adjusted for $R_{Had}(\theta)$

8/15

EPOS-LHC predictions adjusted for $R_{Had}(\theta)$ and ΔX_{r} max

9/15

PIERRE AUGER

QGSJet II-04 and Sibyll 2.3d predictions adjusted for $R_{Had}(\theta)$ and ΔX_{max} p-values of global fit:

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

10/15

Systematic uncertainties

- Experimental
 - 1) Energy scale ± 14%
 - 2) X_{max} measurement +8, -9 g/cm²
 - 3) S(1000) measurement ± 5%
- Method
 - 4) Biases from MC-MC tests for each model

Method works within ~5 g/cm² for ΔX_{max} and few percent for R_{Had}

All four contributions

summed in quadrature

Results of the analysis

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

Less model-dependent mass composition

Significance of MC adjustments

The discrepancy with the data is larger than $5\sigma_{_{stat}}$

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

PIERRE AUGEF

Summary

- PIERRE AUGER
- Two-dimensional distributions of $[X_{max}, S(1000)]$ for energies $10^{18.5}$ $10^{19.0}$ eV and zenith angles < 60°, measured by the Pierre Auger Observatory, were fitted allowing for ad-hoc adjustments of the simulated X_{max} and hadronic signals at different zenith angles for EPOS-LHC, Sibyll 2.3d and QGSJet II-04
- For all three hadronic interaction models, the **improved description of the data** is achieved, if in the simulations:
 - X_{max} is shifted towards deeper values
 - Hadronic signal is increased by ~15-25%
- The statistical significance of the adjustments is greater than $5\sigma_{stat}$ even for the combination of experimental systematic shifts within $1\sigma_{sys}$ that are the most favorable for the models

Backup slides

Fitting procedure $\forall n_{jz} > 0: \quad \mathscr{L} = \sum_{z} \sum_{j} \left(\begin{array}{c} \mathsf{MC} & \mathsf{data} \\ \mathbf{v} & \mathbf{v} \\ C_{jz} - n_{jz} + n_{jz} \cdot \ln \frac{n_{jz}}{C_{jz}} \end{array} \right), \quad \forall n_{jz} = 0: \quad \mathscr{L} = \sum_{z} \sum_{j} C_{jz}$

$$S(1000)(\theta) \cdot \left(\frac{E^{Ref}}{E_{FD}}\right)^{\forall B} \cdot f_{SD}(\theta) = R_{Had}(\theta) \cdot g_{Had}(\theta, \Delta X_{max}, R_{Had}(\theta)) \cdot S_{Had}(\theta) \cdot \left(\frac{R_E \cdot E^{Ref}}{E_{FD}}\right)^{\beta} + R_{em} \cdot g_{em}(\theta, \Delta X_{max}) S_{em}(\theta) \cdot \left(\frac{R_E \cdot E^{Ref}}{E_{FD}}\right), E^{Ref} = 10^{18.7} eV$$

$$f_{SD}(\theta) = R_{Had}(\theta) \cdot R_E^{\beta} \cdot \left(\frac{E^{Ref}}{E_{FD}}\right)^{\beta - \forall B} \cdot g_{Had}(\theta, \Delta X_{max}, R_{Had}(\theta)) \cdot f_{Had}(\theta) + R_{em} \cdot R_E \cdot \left(\frac{E^{Ref}}{E_{FD}}\right)^{1 - 1/B} \cdot g_{em}(\theta, \Delta X_{max}) \cdot (1 - f_{Had}(\theta)), f_{Had}(\theta) = \frac{S_{Had}(\theta)}{S(1000)(\theta)}$$

$$\Rightarrow \langle f_{SD} \rangle_{z} = R_{Had}^{z} \cdot R_{E}^{\beta} \cdot \left(\frac{(E^{Ref})^{\beta-1/B}}{\langle E_{FD}^{\beta-1/B} \rangle_{z}} \right) \cdot g_{Had}^{z} (\Delta X_{max}, R_{Had}^{z}) \cdot \langle f_{Had} \rangle_{z} + R_{em} \cdot R_{E} \cdot \left(\frac{(E^{Ref})^{1-1/B}}{\langle E_{FD}^{1-1/B} \rangle_{z}} \right) \cdot g_{em}^{z} (\Delta X_{max}) \cdot (1 - \langle f_{Had} \rangle_{z}) R_{em} = R_{E} = 1$$

$$\Rightarrow \langle f_{SD} \rangle_{z} = R_{Had}^{z} \cdot \left(\frac{(E^{Ref})^{\beta - 1/B}}{\langle E_{FD}^{\beta - 1/B} \rangle_{z}} \right) \cdot g_{Had}^{z} \left(\Delta X_{max}, R_{Had}^{z} \right) \cdot \langle f_{Had} \rangle_{z} + \left(\frac{(E^{Ref})^{1 - 1/B}}{\langle E_{FD}^{1 - 1/B} \rangle_{z}} \right) \cdot g_{em}^{z} \left(\Delta X_{max} \right) \cdot \left(1 - \langle f_{Had} \rangle_{z} \right)$$

 $X_{max}^{Ref} + \Delta X_{max}$

37th ICRC 2021

J. Vícha (FZU): Adjustments to MC Xmax and signal at ground

17/15