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We present a new method to explore simple ad-hoc adjustments to the predictions of hadronic
interaction models to improve their consistency with observed two-dimensional distributions of
the depth of shower maximum, -max, and signal at ground level, as a function of zenith angle.
The method relies on the assumption that the mass composition is the same at all zenith angles,
while the atmospheric shower development and attenuation depend on composition in a correlated
way. In the present work, for each of the three leading LHC-tuned hadronic interaction models,
we allow a global shift Δ-max of the predicted shower maximum, which is the same for every
mass and energy, and a rescaling 'Had of the hadronic component at ground level which depends
on the zenith angle.
We apply the analysis to 2297 events reconstructed by both fluorescence and surface detectors at
the Pierre Auger Observatory with energies 1018.5 − 1019.0 eV. Given the modeling assumptions
made in this analysis, the best fit reaches its optimum value when shifting the -max predictions of
hadronic interaction models to deeper values and increasing the hadronic signal at both extreme
zenith angles. The resulting change in the composition towards heavier primaries alleviates the
previously identified model deficit in the hadronic signal (commonly called the muon deficit), but
does not remove it. Because of the size of the required corrections Δ-max and 'Had and the large
number of events in the sample, the statistical significance of the corrections is large, greater than
5fstat even for the combination of experimental systematic shifts within 1fsys that are the most
favorable for the models.
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1. Introduction

The mass composition of ultra-high energy cosmic rays (UHECR, above 1018 eV) is derived
from properties of air showers that are initiated by interactions of UHECR with atmospheric nuclei.
The air-shower propertywith high sensitivity to themass of the primaryUHECRparticle is the depth
of shower maximum (-max). It can be inferred directly from the longitudinal profiles measured by
the Fluorescence Detector (FD) telescopes such as those placed at the Pierre Auger Observatory [1].
The precision of inferences on the mass composition is limited by the systematic uncertainties in
the properties of the hadronic interactions extrapolated from the accelerator data available at lower
energies and in a limited volume of the phase space.

The consequent systematic uncertainties on the scale of simulated 〈-max〉 are difficult to
estimate due to many factors influencing the hadronic interactions. From the difference of the
Monte Carlo (MC) predictions using LHC-tuned hadronic interaction models (HI models) we can
estimate that the uncertainty on the scale of 〈-max〉 is at least 30 g/cm2 at ultra-high energies, which
corresponds approximately to one-third of the difference between predictions for protons and iron
nuclei, see the left panel of Fig. 1. The fluctuations of -max differ by ∼ 5 g/cm2 between different
HI models.
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Figure 1: Left: the energy evolution of the mean of the -max distribution predicted for three models of
hadronic interactions and four primary species. Right: the dependence of average signal at ground level at
1000m (black) on the distance of -max to the ground (�- = 880 g/cm2/cos(\) − -max) for proton showers.
The hadronic and electromagnetic parts of the signal are shown in red and blue, respectively.

The signal at ground level at 1000m from the core, ((1000), measured by the water-Cherenkov
stations of the Surface Detector (SD) at the Pierre Auger Observatory [2], is sensitive to the mass
of the primary particle due to the large contribution of the muon component. However, various
characteristics of air showers related tomuons (signal normalization, arrival times) are not described
well by HI models [3, 4]. As a result, inferences on the mass composition from the SD and FD data
are in strong disagreementwith each other. We divide ((1000) into the hadronic part (Had (including
muons, electromagnetic halo from their decays, and local hadronic jets [5]) and electromagnetic part
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(em, see the right panel of Fig. 1. The predicted (em (blue) is very universal, and themain differences
in ((1000) between the HI models come from the different normalization and attenuation of (Had.

2. A method to adjust simulated Xmax and hadronic signal at the ground

We apply a slight modification of the method presented in [6] based on the maximum likelihood
fit of the two-dimensional distributions of -max and ((1000) measured with the FD and SD of the
Pierre Auger Observatory. The method aims to find which adjustments of the simulated -max and
((1000) are required for a consistent description of the measured two-dimensional [-max, ((1000)]
distributions.

The data are divided into five zenith-angle (\) bins, as shown in Fig. 2. They are fitted with
MC templates chosen in the form of a product of the Generalized Gumbel [7] (describing -Ref

max
distributions)1 and Gaussian functions (describing (Ref (1000) distributions) with the mean linearly
dependent on -Ref

max.
In this work, we introduce ad-hoc adjustments in the fit to the simulated �-Ref

max and �(Ref (1000)
distributions, Δ-max and 5SD, as

-Ref
max ≡ �-Ref

max + Δ-max, (1)
(Ref(1000) ≡ �(Ref(1000) · 5SD(\), (2)

that are inspired by the universality properties of air showers. The rescaling parameter 5SD(\)
is achieved through the multiplication of the scales of simulated hadronic signals at two extreme
zenith-angle bins, (Had(\min) · 'Had(\min) and (Had(\max) · 'Had(\max), leaving them as free fit
parameters. 'Had(\) is linearly interpolated between 'Had(\min) and 'Had(\max) according to the
average �- = 880 g/cm2 / cos \ − -max value in the \ bin. The three separate corrections to
the MC predictions result in the following scaling factor for the total simulated signal (Ref (1000)
considering the fraction of the hadronic signal 5Had = (Had/((1000):

5SD(\) = 'Had(\) · 6Had(\) · UHad(\) · 5Had(\) + 6em(\) · Uem(\) · (1 − 5Had(\)), (3)

with factors stemming from the energy dependence of the signals, UHad =
(�Ref)V−1/�

〈�V−1/�
FD 〉 (\)

and Uem =

(�Ref)1−1/�

〈�1−1/�
FD 〉 (\)

, where the parameter V = 0.92 was chosen in accordance with [8], and � = 1.031 is the
SD energy calibration parameter [9]. We take into account the changes in the signal arising due to
the adjustment of -max. The parameterizations, 6Had(\) and 6em(\), of the dependence of 〈(Had〉
and 〈(em〉 on the distance of -max to the ground, respectively, are used for this purpose considering
the adjustment of the (Had attenuation as well. For instance, the change of ((1000) reaches ∼7% at
most in case of Δ-max ∼ 50 g/cm2.

The MC templates consist of a sum of templates for individual primary species weighted
by their relative fractions 58 , 8 = proton (p), helium (He), oxygen (O), iron (Fe), which serve as
other three free fit parameters (

∑
5i = 1). This way, the result of the fit is the combination of four

primary particles (p, He, O, Fe) and of the adjustment factors Δ-max, 'Had(\min) and 'Had(\max)
for which the best description of the measured [-max, ((1000)] distributions is achieved.

1’Ref’ indicates that we use the observables scaled to the reference energy �Ref = 1018.7 eV.
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Figure 2: Two-dimensional distributions of ((1000)Ref and -Ref
max for data of the Pierre Auger Observatory

measured in the energy range 1018.5 − 1019.0 eV in five zenith-angle bins.

The correlation between -max and ((1000), governed by the general properties of air showers
and thus weakly dependent on characteristics of particular HI models [10], is implicitly accounted
for in the fits helping to reduce the degeneracy between the mass composition and the scale of
simulated 〈-max〉. In the absence of differences other than the main ones between HI models
and data in Δ-max, 'Had(\min) and 'Had(\max), the fit would result in totally model-independent
inferences on the mass composition. Clearly, this is not the case, and there are remaining higher-
order differences not taken into account in the current method, such as differences between HI
models in the widths of -max distributions, separations in -max between the primary species, and
mass dependencies of 'Had(\min) and 'Had(\max) etc.

3. Data and simulations

We use the events detected at the same time by SD and FD of the Pierre Auger Observatory
during the period 1/1/2004 – 31/12/2018. The range of the FD energies is 1018.5 − 1019.0 eV (mean
energy ∼ 1018.7 eV), with the lower limit corresponding to the 100% efficiency of the SD for zenith
angles below 60 degrees. The FD selection is the same as used for the -max analysis [11, 12] and
the SD selection follows that of the SD energy-spectrum analysis [9]. In total, 2297 high-quality
events were selected for the analysis (see Fig. 2).

The simulated air showers were produced using Corsika 7.7400 [13] and the detector simula-
tions and event reconstructions were performed with the Auger Offline software [14]. Four primary
particles (p, He, O, Fe) and three HI models: Epos-lhc [15], Qgsjet II-04 [16] and Sibyll 2.3d
[17] were used.

4. Results

The examples of description of projected (Ref (1000) distributions at two extreme \-bins and
of the projected -Ref

max distribution are shown in Fig. 3c together with the \ evolution of the Gideon-
Hollister correlation coefficient (AG) [18] of the [-max, ((1000)] distributions. The lowest negative
logarithm of the likelihood ratio (L) was found to be ∼480 (?-value ' 2.6%) for Epos-lhc, ∼507
(?-value ' 3.6%) for Qgsjet II-04, and ∼478 (?-value ' 18%) for Sibyll 2.3d. To illustrate the
improvement of the data description introducing the adjustment of the simulated -max, we show the
same comparison in Fig. 3b for Δ-max = 0 g/cm2. The data description without any adjustment to
MC predictions is shown in Fig. 3a with mass composition obtained from the -max fit.
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Figure 3: From left: ((1000)Ref distributions in two extreme zenith-angle bins, the -Ref
max distribution and

the AG correlation parameter of [-max, ((1000)] as a function of the zenith angle. Top (a): results of the
-Ref

max fit; middle(b): results of the fit with Δ-max fixed to zero g/cm2; bottom (c): results of the full fit.

The resulting rescaling parameters of the simulated hadronic signal 'Had(\min) and 'Had(\max)
are shown in the left panel of Fig. 4. We found that the adjustment of the attenuation of (Had
(difference between 'Had(\min) and 'Had(\max)) depends mainly on the experimental energy scale,
see the right panel of Fig. 6. For the energy scale currently adopted at the Pierre Auger Observatory,
the fit results prefer the attenuation of (Had predicted by Epos-lhc. For all three HI models, a
deeper -max prediction is preferred with Δ-max values equal to 22 ± 3 +14

−11 g/cm2 for Epos-lhc,
48± 2 + 9

−12 g/cm2 for Qgsjet II-04, and 30± 2 + 9
−15 g/cm2 for Sibyll 2.3d, see Fig. 5. Such shifts of

simulated -max values lead to a heavier mass composition (right panel of Fig. 4) compared to the
inferences with the unaltered HI models. As expected, the inferences on the mass composition are
now much less model-dependent.

The increase of the MC prediction on -max, resulting in the increase of the signal at the ground,
alleviates the problem with the deficit of muons in the predictions of HI models, as, e.g., in [4].
Still, for a satisfactory description of the data, the hadronic signal in HI models should be increased
by 15± 2 +20

−16% for Epos-lhc, by 24± 2 +23
−19% for Qgsjet II-04, and by 17± 2 +22

−17% for Sibyll 2.3d
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Figure 4: Results of the fits of [-max, ((1000)] distributions for Epos-lhc, Qgsjet II-04 and Sibyll 2.3d.
Left: the rescaling parameters for the hadronic signal. The contours denote regions with 1, 3 and 5f
statistical uncertainties. Right: the fractions of primary nuclei. The gray bands in both panels indicate the
size of the total systematic uncertainties.
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Figure 5: Correlations between the rescaling parameters of the hadronic signal at the minimal (left) and
maximal (right) zenith angles and the shift of -max scale. The contours mark 1, 3, and 5f statistical errors.
The gray bands indicate the size of total systematic uncertainties.

at low zenith angles of the showers (∼ 28◦). For high zenith angles (∼ 55◦), the hadronic signal at
ground should be increased by 16 ± 2 +13

−11% for Epos-lhc, by 17 ± 2 + 9
−12% for Qgsjet II-04, and by

14 ± 1 +15
−10% for Sibyll 2.3d.

4.1 Systematic uncertainties

There are four dominant sources of systematic uncertainties influencing the results. Three of
them are 1fsys experimental uncertainties on the energy scale ±14% [9], -max

+8
−9 g/cm2 [11] and

((1000) ±5% [2]. The fourth source of systematic uncertainty is related to the biases of the method
itself, as estimated from MC-MC studies (+2−4 g/cm2 for Δ-max, +1−3% for 'Had(\min), and ±1% for
'Had(\max)). All four uncertainties are summed in quadrature, and the total systematic uncertainties
are shown by gray bands in Figs. 4 and 5.
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For each possible combination of the three (positive and negative) 1fsys systematic experimental
uncertainties, we calculated the statistical significance fstat of MC corrections as the Cartesian
distance in three-dimensional space of the three MC corrections in units of their statistical errors.
This way we explore systematic experimental uncertainties 1fsys to see if they can conspire to
evade the need to adjust model predictions. However, due to the analysis relying on the correlations
between the signal at ground level, zenith angle, and -max, whereas the systematics are largely
uncorrelated, the result is robust. Employing systematic shifts within 1fsys to reduce the adjustments
in -max and 'Had as much as possible, the needed adjustments of model predictions are greater than
5fstat for all models.
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Figure 6: Left: the energy evolution of the mean -max measured at the Pierre Auger Observatory using FD
[12]. The adjusted MC predictions on 〈-max〉 obtained in this work are shown in red and blue for protons
and iron nuclei, respectively. The bands correspond to the systematic uncertainties. The lighter color lines
indicate unmodified MC predictions. Right: the best fit results on the Δ-max and correction to the (Had
attenuation for the individual systematic effects. The bands illustrate the total systematic uncertainty summed
in quadrature.

5. Discussion

On the left panel of Fig. 6, we show the adjusted predictions of 〈-max〉 for protons and iron
nuclei together with the measurements at the Pierre Auger Observatory with the FD [12]. By
artificially smearing -max in the case of Epos-lhc, we checked that the main difference between
the adjusted model predictions on 〈-max〉 between Epos-lhc and the other two models is due to the
narrower -max distributions predicted by Epos-lhc. From the current analysis, it follows that the
hadronic signal at 1000m from the shower core should be increased by ∼15-25% for \ ∈ (0◦, 33◦)
(�- ∼240 g/cm2) and by ∼15% for \ ∈ (51◦, 60◦) (�- ∼780 g/cm2) for all three HI models.
This increase is smaller compared to our earlier findings [4], but this is mainly because, in the
current method, adjustments are applied not only to the hadronic signal but also to -max. The
adjusted attenuation of the hadronic component is correlated with the change of the energy scale,
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with the one currently adopted at the Pierre Auger Observatory preferring the attenuation predicted
by Epos-lhc, see the right panel of Fig. 6.

In summary, we presented a novel method allowing one to infer deficiencies in the HI models
in the description of both longitudinal and lateral development of air showers, accounting for
which naturally leads to the reduction of the systematic uncertainties in the inferences on the mass
composition. We use a global fit of two-dimensional distributions of -max and ((1000) measured
with the FD and SD of the Pierre Auger Observatory at five different zenith angles. This way,
we fit mass composition and ad-hoc adjustments of predictions of HI models in the energy range
1018.5 − 1019.0 eV. In this work, we have left as free parameters an overall shift in the predicted
-max and a scale of the hadronic component at two extreme zenith angles. An overall improvement
in the description of measured data of (Ref (1000), -Ref

max, and their correlation was achieved for all
three HI models. These models are shifted towards deeper values and, consequently, the deficit in
the simulated hadronic signal is alleviated with respect to the previous studies that did not consider
an adjustment in the predicted 〈-max〉. Without the three MC adjustments, the HI models are found
to be at variance with the data with a significance & 5fstat accounting for shifts of . 1fsys. We
should note that we have taken into account only the simplest but leading ad-hoc adjustments to the
predicted -max and (Had(\). Accounting for other possible adjustments, like, e.g., -max and ((1000)
fluctuations, and their impact on the predictions mentioned above, will be further investigated.
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