Prospects for Cross-correlations of UHECR Events with Astrophysical Sources with Upcoming Space-based Experiments T. M. Venters¹ and A. Romero-Wolf² on behalf of the POEMMA and ZAP Collaborations

Background

- Sources of ultra-high energy cosmic rays (UHECRs) remain elusive
- Magnetic fields that deflect UHECRs remain poorly understood, though expect weaker deflection at the highest energies
- Expect UHECR sky distribution to exhibit anisotropy suggestive of underlying source population and possibly even hotspots
- A common test for UHECR anisotropy cross-correlates UHECR arrival directions with astrophysical catalogs
- \geq 4.5 σ correlation above ~40 EeV with nearby starburst galaxies reported by Auger
- POEMMA and ZAP will monitor large target volumes from space in order to detect UHECR showers:
- > Unprecedented UHECR exposures with full-sky coverage
- \succ 5 σ discovery reach for many astrophysical scenarios

Method

Objectives

- <u>Objective 1</u>: For a given number of UHER events and a given astrophysical scenario, determine average significance of crosscorrelation with astrophysical catalog.
- <u>Objective 2</u>: For a given astrophysical scenario, determine the number of events needed to guarantee a 5σ detection of the cross-correlation.

Likelihood Test for Cross-correlations

Construct mock UHECR datasets w/ params. $(N_{ev}, f^*_{aniso}, \Theta^*)$:

- $N_{\rm ev}$ from exposure or left free
- f^*_{aniso} fraction of aniso. events
- Θ *smearing angle
- Construct astrophys. hypothesis maps, \mathcal{F}_{skv} , w/ params. (f_{sig}, Θ) : UHECR flux exposure from sources

$$\mathcal{F}_{\rm sky}(\hat{n}) = \frac{\omega(\hat{n})}{\mathscr{C}} \left[(1 - f_{\rm sig}) \frac{1}{4\pi} + f_{\rm sig} \mathcal{F}_{\rm src}(n) \right]$$

normalization
Compute TS for each
$$(f_{sig}, \Theta)$$
:

$$TS = 2 \ln \left(\frac{L(\mathcal{F}_{sky})}{L(\mathcal{F}_{iso})} \right)$$
 likelihoo

- Obj. 1: Compute average TS values, find maximum, compute significance
- Obj. 2: Construct TS distributions for mock and isotropic datasets; compute req. $N_{\rm ev}$ to distinguish at level of 5 σ

Results

Author Affiliations:

Results (cont.)

Parameter		N _{ev} Required		
$f_{ m sig}$	Θ	AGN	SBG	2MRS
10%	20 °	1240	2060	>5000
	15°	920	1910	4830
15%	20 °	680	1000	2550
	15°	660	870	2280
20%	20 °	<650	<650	1520
	15°	<650	<650	1320

Determine N_{ev} such that 5th percentile of mock dataset separated by more than 5 std. devs. from mean of isotropic datasets.

	POEMMA	ZAP
ergy Resolution	$\leq 18\%$ above 50 EeV	< 30%
ular Resolution	$< 1.5^{\circ}$ above 40 EeV	1° – 4°

Parameter values represent astrophysical scenarios convolved with detector characteristics, such as ang. resolution and energy resolution. Different experiments can expect different parameter values, leading to different requirements for the number of events.

Conclusions

POEMMA and ZAP will achieve unprecedented UHECR exposures in ~

Both will have full-sky coverage, providing them access to regions of

Both will achieve 5σ discovery reach for many plausible astrophysical

References

¹NASA Goddard Space Flight Center, ²Jet Propulsion Laboratory/Caltech