

Performance of the 433 m surface array of the Pierre Auger Observatory

Gaia Silli^{*a,b*} for the Pierre Auger Collaboration^{*c*}

^eInstituto de Tecnologías en Detección y Astroparticulas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina ¹Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany ⁶Observatorio Pierre Auger, Av. San Martín Norte 200, 6513 Malargie, Argentina

Flash talk

The array

The new array:

- is the enhancement of the surface array of the Pierre Auger Observatory
- consists of 19 water-Cherenkov detectors spaced at 433 m
- complements the existing 750-m and 1500-m ones
- reaches energies down to 10 PeV

Why is it important?

- It gives Auger the capability to observe with a surface detector the second knee of the cosmic-ray spectrum
- It expands the search for ultra-high energy photons coming from the Galactic Center

We present

the first results of the 433 m array after seven years of data taking

- the lateral distribution function
- an optimal distance of 300 m to measure the energy
- the angular resolution as function of the energy

an evaluation of its performance from simulations

a full efficiency threshold above 50 PeV for cosmic-rays arriving at less than 45 $^\circ$ of zenith angle

These analysis will set the foundations for extending the SD-oriented research lines in Auger down to $10^{16}~{\rm eV}$

