

AUGER OBSERVATORY Teresa Bister for the Pierre Auger Collaboration

ICRC 2021, Berlin / Online

SPONSORED BY THE

Federal Ministry of Education and Research

A combined fit of energy spectrum, shower depth distributions and arrival directions to constrain models of UHECR sources

Introduction

 UHECR flux ↔ correlation with catalogs of starburst galaxies (SBGs) / active galactic nuclei (AGNs)
 → σ_{SBG} = 4.0, σ_{AGN} = 3.1, E ≥ 38 EeV

[see J. Biteau, this conference]

but: only with arrival directions no clear distinction possible (similar source directions)

- → combined fit of energy, shower depth Xmax & arrival directions
 - include energy spectrum & Xmax as observables
 - describe energy dependency of catalog contribution & Fisher smearing

Universe model setup

Teresa Bister - ICRC 2021 – Combined Fit of energy spectrum, Xmax distributions and arrival directions

From injection to energy-dependent arrival directions

 calculate source contribution for each energy bin e

depending on: flux weight, exposure, distance injection + propagation (1d CRPropa3 simulations)

• build pdfs for arrival distributions in energy bins e:

 $\mathrm{pdf}_{e} = f_{S}(f_{0}, E_{\mathrm{det}}^{e}) \cdot S(E_{\mathrm{det}}^{e}, \delta_{S}(E_{\mathrm{det}}^{e})) + (1 - f_{S}(f_{0}, E_{\mathrm{det}}^{e})) \cdot B$

signal contribution: depends on propagation, source distribution Fisher smearing for each source & each arriving element with: $\delta_S = \delta_0 Z_{\text{det}} \frac{10 \text{ EeV}}{E_{\text{det}}}$

- one fully energy-dependent universe model:
 - E, Xmax, ADs: information about source distribution
 - E-dependency of smearing & signal fraction: 2 fit parameters δ_0 , f_0
 - \rightarrow increased sensitivity to distinguish source models

Fit method overview

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

Benchmark simulation: starburst galaxies + background

Teresa Bister - ICRC 2021 – Combined Fit of energy spectrum, Xmax distributions and arrival directions

 $^{6}/_{11}$

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

Fit with catalog models

- = simulated truth
- parameters can be reconstructed well
- correlations visible $(\gamma \leftrightarrow R_{cut}), (f_0 \leftrightarrow \delta_0)$

as in: Auger Combined Fit, Auger ADs comparison to astrophysical catalogs

AGN model (m=3.4)

- larger uncertainties
- *true* simulated values still within uncertainties even for *false* AGN model
- best-fit (MAP) further away from truth

Fit with catalog models

reminder:

benchmark sim. contains

SBG catalog as input, m=3.4 spectrum and composition energy-dependent arrival directions not can be described by both models described by false AGN model (directions, distances 4) $2\log \frac{\mathcal{L}_{AD}}{\mathcal{L}_{AD}}$ $2\log \frac{\mathcal{L}_{\text{sum}}}{\Gamma^{\text{ref},m=3.4}}$ D_E $D_{X_{\max}}$ D_{total} SBG model $(m = 3.4) \rightarrow sim$. truth 80.2 85.7 5.5 30.6 32.4 AGN model (m = 3.4) 10.8 87.8 11.2 6.0 81.8 **SBG model** AGN model -1.0AGN model (m = 5.0) 89.9 1.4 5.6 84.1 10^{38} 10^{38} $E_{
m det}^3 J_{
m det} (E_{
m det}) \ / \ ({
m km^{-2} \ yr^{-1} \ sr^{-1} \ eV^2})$ $E_{
m det}^3 J_{
m det}(E_{
m det}) \;/\; ({
m km^{-2}\;yr^{-1}\;sr^{-1}\;eV^2})$ Auger 2019 Auger 2019 10^{37} 10^{37} benchmark sim. benchmark sim A=1A=1A=2-4 A = 2-4A=5-22 A=5-22 A=23-38 A=23-38 A>38 A>38 10^{36} 10^{36} from catalog from catalog fit result fit result 18.5 18.519.019.520.0 19.520.0 19.0 $\log_{10}(E_{\rm det} / {\rm eV})$ $\log_{10}(E_{\rm det} / \,\mathrm{eV})$ model (AGNs) signal contribution energy dependency different from simulated input (SBGs)

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

Estimation of the significance

- apply analysis on **isotropic simulations** (*m*=3.4, benchmark simulation parameters)
- isotropy tail follows X² distribution with ndf=2 (SBG model has 2 more fit parameters: $f_{o'}$, δ_{o})

 $p_{\rm SBG} \simeq 9 \cdot 10^{-8}$ $p_{\rm AGN} \simeq 5 \cdot 10^{-3}$ \rightarrow analysis can identify true simulated SBG model more sensitive than AD-only analysis on same simulation: $p_{SBG}^{AD-only, \text{ pre-trial}} \simeq 6.1 \cdot 10^{-6} \left[p_{AGN}^{AD-only, \text{ pre-trial}} \simeq 1.7 \cdot 10^{-3} \right]$ no need for energy threshold scan \rightarrow no penalization energy-dependent arrival directions most important AGN model SBG model 10^{3} 10^{3} 10^{3} 10^{3} X^2 (ndf=2) 10^{1} 10^{2} 10^{2} 10^{2} 10^{-1} 10^{1} 10^{1} 10^{1} 10^{-3} 10^{0} 10^{-5} 10^{0} 10^{0} 25 30 15 20 10 30 10 20 30 10 20 10 20 30 0 $2 \log (\mathcal{L}_{\text{SBG}} / \mathcal{L}_{\text{ref}})_{\text{total}}$ $2 \log (\mathcal{L}_{\text{SBG}} / \mathcal{L}_{\text{ref}})_E$ $2 \log (\mathcal{L}_{\text{SBG}} / \mathcal{L}_{\text{ref}})_{X \text{max}}$ $2 \log (\mathcal{L}_{\text{SBG}} / \mathcal{L}_{\text{ref}})_{\text{AD}}$

Teresa Bister - ICRC 2021 – Combined Fit of energy spectrum, Xmax distributions and arrival directions

Conclusions

- presented combined fit including energy spectrum, Xmax distributions & energy-dependent arrival directions
- on benchmark simulation (resembles Auger data):
 - source parameters can be reconstructed including uncertainties
 - · additionally determine energy-dependent signal contribution and magnetic field smearing

Teresa Bister - ICRC 2021 – Combined Fit of energy spectrum, Xmax distributions and arrival directions

Backup

Signal contribution & smearing as a function of energy

pdfs are constructed via

 other distances of AGNs:
 different energy dependency of smearing & signal contribution

$$pdf_{e} = f_{S}(f_{0}, E_{det}^{e}) \cdot S(E_{det}^{e}, \delta_{S}(E_{det}^{e})) + (1 - f_{S}(f_{0}, E_{det}^{e})) \cdot B$$

signal contribution:
depends on propagation,
source distribution
$$\delta_{S} = \delta_{0} Z_{det} \frac{10 \text{ EeV}}{E_{det}}$$

light

SBG

heavy

- strong increase of signal contribution for SBGs not describable with AGN catalog
- need only 2 fit parameters: smearing of a R=10 EV particle & total signal fraction of complete data set E > 10^{18.7} eV
- even though total signal fraction $f_0=1.2\%$ is very small, at highest energies signal contribution $f_s(f_0)$ is large due to closeness of SBGs

Teresa Bister - ICRC 2021 – Combined Fit of energy spectrum, Xmax distributions and arrival directions

Energy thresholds used in the fit

- detected energy spectrum bins: $[10^{19.0}, 10^{19.1}, 10^{19.2}... 10^{20.3}, 10^{20.4}] \text{ eV} \rightarrow O(20,000 \text{ events})$
- Xmax distribution bins: $[10^{19.0}, 10^{19.1}, 10^{19.2}... 10^{19.6}, 10^{20.4}] eV \rightarrow O(2000)$ events
 - similar to <u>Auger Paper</u>, but threshold moved from 10^{18.7} eV to 10^{19.0} eV because no below-ankle CRs wanted which may come from different source class
 → see E. Guido for the Pierre Auger Collaboration (this conference)
 - between 10^{18.7} eV and 10^{19.0} eV bins included in energy likelihood only if model overshoots data
- arrival directions: [10^{19.3}, 10^{19.4}, 10^{19.2}... 10^{20.4}] eV
 - dipole not modeled in arrival directions, so higher energy threshold necessary
 - \rightarrow see R. Menezes for the Pierre Auger Collaboration (this conference)

Fit of the Auger ICRC 2019 data set > 10 EeV

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

15/11

Energy dependency of the likelihood ratio

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

16/11

Arrival directions likelihood ratio of best-fit models

skymaps: show arrival direction pixels of benchmark simulation, colored as likelihood ratio between catalog (SBG / AGN) model and reference model (exposure). Sum of likelihood ratio over all pixels given as TS (per energy bin), can be compared to slide 16

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

Influence of the Galactic magnetic field on the benchmark simulation

- same source parameters etc.
- test influence of deflections by JF12 magnetic field

Teresa Bister - ICRC 2021 - Combined Fit of energy spectrum, Xmax distributions and arrival directions

Fit results on benchmark simulation

posteriors and fitted observables

	D_E	$D_{X_{\max}}$	D_{total}	$2\log \frac{\mathcal{L}_{\mathrm{AD}}}{\mathcal{L}_{\mathrm{AD}}^{\mathrm{ref},m=3.4}}$	$2\log \frac{\mathcal{L}_{\text{sum}}}{\mathcal{L}_{\text{sum}}^{\text{ref},m=3.4}}$
ref. model ($f_0 = 0, m = 0$)	6.0	82.1	88.1	0	-0.8
ref. model ($f_0 = 0, m = 3.4$)	5.8	81.5	87.3	0	0
ref. model ($f_0 = 0, m = 5.0$)	12.9	84.0	96.9	0	-9.6
SBG model ($m = 3.4$) \rightarrow sim. truth	5.5	80.2	85.7	30.6	32.4
- AGN model ($m = 3.4$)	6.0	81.8	87.8	11.2	10.8
— AGN model ($m = 5.0$)	5.6	84.1	89.9	1.4	-1.0

Fit results: reference model (m=0.0)

Teresa Bister - ICRC 2021 - Combined Fit of ener

Fit results: reference model (m=3.4)

Fit results: reference model (m=5.0)

Teresa Bister - ICRC 2021 - Combined Fit of ener

Fit results: SBG model (m=3.4)

Fit results: AGN model (m=3.4)

Teresa Bister - ICRC 2021 - Combined Fit of ener

Fit results: AGN model (m=5.0)

Teresa Bister - ICRC 2021 - Combined Fit of ener

