"Spider" Millisecond Pulsar Binaries as Potential TeV Emitters

Zorawar Wadiasingh (NASA GSFC/USRA), Christian van der Merwe (NWU), Christo Venter (NWU), Alice Harding (LANL), Matthew Baring (Rice) and others

ICRC 2021 Virtual Talk

Fermi LAT Discoveries - Black Widows and Redbacks

~100 millisecond pulsars discovered in unidentified Fermi LAT sources ~20 black widows, ~9-10 redbacks (>60 known in other bands)

Name	$P_{\rm ms}$	$\left(egin{array}{c} \dot{P}_i \ 10^{-20} \end{array} ight)$	$\begin{pmatrix} L_{\rm sd}^{a} \\ 10^{34} \text{ erg s}^{-1} \end{pmatrix}$	B_8^{b}	d (kpc)	$P_{\mathbf{b}}$ (hr)	$egin{array}{comp} M_{ m comp}\ (M_{\odot}) \end{array}$	<i>a</i> ₁₁	$E_{ m cut}$ (TeV)	References
J0610-2100°	3.86	0.34	0.36	2.96	3.5	6.9	0.025	1.65	3.04	(2)
J1124-3653°	2.41	0.57	2.50	3.05	1.7	5.4	0.027	1.40	2.03	(1)
J1301+0833°	1.84	0.95	9.36	3.44	0.7	6.5	0.024	1.59	1.37	(3)
J1311-3430°	2.56	2.08	7.64	6.01	1.4	1.56	0.008	0.61	2.33	(4)
J1446-4701 ^c	2.19	1.01	5.93	3.88	1.5	6.7	0.019	1.62	1.52	(5)
J1544+4937°	2.16	0.31	1.87	2.12	1.2	2.8	0.018	0.91	2.72	(6)
J1731–1847	2.34	2.47	11.9	6.26	2.5	7.5	0.04	1.75	1.23	(7)
J1745+1017 ^e	2.65	0.23	0.75	2.02	1.36	17.5	0.016	3.07	1.86	(8)
J1810+1744 ^c	1.66	0.45	6.08	2.26	2	3.6	0.044	1.07	1.86	(1)
J1959+2048°	1.61	0.72	10.6	2.80	1.53	9.2	0.021	2.00	1.19	(9)
J2047+1053°	4.29	2.00	1.56	7.63	2	3	0.035	0.95	2.78	(3)
J2051-0827 ^c	4.51	1.23	0.83	6.14	1	2.4	0.027	0.82	3.51	(2)
J2214+3000°	3.12	1.46	2.96	5.57	1.32	10	0.014	2.11	1.59	(10), (11)
J2234+0944 ^c	3.63	1.94	2.50	6.91	1	10	0.015	2.11	1.66	(3), (5)
J2241-5236°	2.19	0.67	3.90	3.15	0.5	3.4	0.012	1.03	2.12	(12)
J2256-1024°	2.29	1.58	8.11	4.96	0.6	5.1	0.034	1.35	1.54	(1)

Measured and

Name	$P_{\rm ms}$	(10^{-20})	$\begin{pmatrix} L_{\rm sd}^{\rm a} \\ \left(10^{34} \text{ erg s}^{-1}\right) \end{pmatrix}$	B_8^{b}	d (kpc)	$P_{\rm b}$ (hr)	$M_{ m comp} \ (M_{\odot})$	<i>a</i> ₁₁	$E_{\rm cut}$ (TeV)	References
J1628-3205	3.21	1.13	2.11	4.96	1.2	5	0.16	1.36	2.15	(2)
J1723-2837	1.86	0.75	7.18	3.08	0.75	14.8	0.4	2.90	1.09	(3), (4)
J1816+4510 ^c	3.19	4.03	7.64	9.34	2.4	8.7	0.16	1.97	1.30	(5)
J2129-0429	7.61	43.54	6.08	47.4	0.9	15.2	0.37	2.94	1.12	(6)
J2215+5135°	2.61	2.79	9.67	7.03	3	4.2	0.22	1.22	1.55	(6)
J2339-0533°	2.88	1.39	3.59	5.21	0.4	4.6	0.26	1.30	1.93	(7), (8)

Venter et al. (2015)

Table 1 Measured and Derived Parameters of BW Pulsars

Table 2			
Derived Parameters	of	RB	Pulsars

Why are "Spider" Binaries Interesting?

- We know pulsar winds are good accelerators and make TeV emission
- Clean systems: circular orbits, many orbits, pulsar well timed, companion radial velocities ==> inclination and component masses constrained
- Fermi gamma-ray pulsations constrains pulsar magnetic obliguity and also binary inclination (if spin and orbital axes aligned)
- Many of them (~10 now with X-ray obs, ~60 in the radio) and growing
- Study shock acceleration and pulsar winds in obligue shocks
- Doppler boosting along shock necessary to match X-ray LCs. This constrains the character of the pulsar termination shock
- Target photons inverse Compton in the TeV
- Flares of the companion $u \sim 1$ to $u \gg 1 erg/cm^3 well suited flaring timescales for IACTs$
- Double humped SED should peak in the MeV and TeV some (all?) could be "gamma-ray binaries"
- Exciting for CTA and AMEGO (or any other sensitive MeV concepts)

X-ray Observations

- Spectral photon indices are typically $\Gamma \approx 1-1.5$ implying very hard underlying electron power-law distributions and efficient acceleration
- Up to 80 keV NuSTAR PL implies downstream shocked B \ge 1 G by containment (Hillas criterion) arguments

Geometric X-ray LC Fitting

Wadiasingh et al., in prep.

Schematic Geometry (Pulsar State)

Physics somewhat similar to massive binaries (cf. Dubus) but scales and geometry differ — shock may be around companion

Model Schematic — Doppler Boosting

ApJ 904:91, 2020

Van der Merwe, Wadiasingh, Venter, Harding & Baring;

Pulsar Wind + companion B

Pulsar Wind + companion B

Wadiasingh et al. (2018)

Pulsar Wind + companion B

Wadiasingh et al. (2018)

х

Fermi-LAT Orbital Modulation Seen in a small subset of spiders

Fermi-LAT Orbital Modulation — Pulse Enhancement Redback J2039-5617

Pulsed enhancement near pulsar <u>superior</u>

Multizone Modeling – Simultaneous spectra and light curves

Van der Merwe, Wadiasingh, Venter, Harding and Baring; ApJ 904:91, 2020

Characteristic Scales

 $a \sim 10^{11} \text{ cm}$ $R_* \sim 0.3a$ $r_{\rm LC} \sim 10^7 \text{ cm} \sim 10^{-4}a$ $T_{\rm comp} \sim 5000 - 8000 \,\,{\rm K}$

$$\begin{split} B_{\rm w} &\approx \left(\frac{3\dot{E}_{\rm SD}}{2c}\right)^{1/2} \frac{1}{r_{\rm s}} = 22 \left(\frac{\dot{E}_{\rm SD}}{10^{35} \, {\rm erg \, s^{-1}}}\right)^{1/2} \left(\frac{10^{11} \, {\rm cm}}{r_{\rm s}}\right) \,\,{\rm G} \qquad B_{\rm s} \gtrsim B_{\rm s,min} \approx 4.4 \, \epsilon_{X,\rm max}^{1/3} \left(\frac{10^9 \, {\rm cm}}{r_{\rm L}}\right)^{2/3} \\ \sigma &\sim 10^{-5} - 10^{-3} \quad {\rm from \ SED \ fitting} \\ u_B \sim \mathcal{O}(0.1 - 10) \,\, {\rm erg \ cm}^{-3} \\ u_{\rm ph} \sim \mathcal{O}(0.1 - 1) \,\, {\rm erg \ cm}^{-3} \\ E_{\rm cut} \sim 0.1 - 10 \,\, {\rm erg \ } \rightarrow 0.1 - 10 \,\, {\rm TeV \ electrons} \end{split}$$

- Model Assumptions UMBRELA Code
- 1. Hemispherical polar cap shape for shock surrounding companion (to be relaxed soon).
- 2. Azimuthal symmetry about line joining pulsar and companion $(d/d\phi = 0)$.
- 3. Steady-state (d/dt = 0).
- 4. Isotropic black-body emission at temperature T from companion. IC on companion photons dominates at TeV. SSC is negligible.
- 5. Approximate particle transport using timescales (linearization).
- Isotropic steady-state particle spectrum in comoving frame. 6.
- Bulk flow: linear profile for $\beta\Gamma(\theta)$ (bulk momentum linearly increasing). 7.
- τ_{vv} is quite small, even for flaring companions and is neglected for now. 8.

Simultaneous Spectra and Orbital Light Curves: Particle Injection and Transport + Beaming and Emission Code in Multiple Zones

Injection Spectrum

Cut-off Energy:

Solid Angle & Diffusion: $Q_{\rm PSR}(E_{\rm e}) = Q_0 E_{\rm e}^{-\Gamma} \exp\left(-\frac{E_{\rm e}}{E_{\rm cut}}\right)$ $Q_{i} = \frac{1}{t_{\rm ver}} \frac{dN_{\rm e,i-1}}{dE} + \frac{1}{2} \left(\cos \lambda_{i} - \cos \lambda_{i+1} \right) Q_{\rm PSR}, \quad i > 1$

Normalization - Current and Energetics: $\dot{N}_{\rm GJ} = \frac{B_{\rm PSR} 4\pi^2 R_{\rm PSR}^3}{2ceP^2}$

 $\int_{E_{\min}}^{\infty} Q_{\text{PSR}} dE_{\text{e}} = (M_{\pm} + 1) \dot{N}_{\text{GJ}} \quad \int_{E_{\min}}^{\infty} E_{\text{e}} Q_{\text{PSR}} dE_{\text{e}} = \eta_{\text{p}} \dot{E}_{\text{rot}}$

This is usually the minimum and sets Ecut $E_{\rm cut} = \min\{E_{\rm SR \ RRLA}, E_{\rm Hillas}, E_{\rm MSP \ \Phi}\}$ $Q_1 = \left(\frac{1}{4\pi} \int_0^{2\pi} \int_{\lambda_2}^{\lambda_2} \sin \lambda \, d\lambda \, d\phi\right) Q_{\rm PSR} = \frac{1}{2} \left(\cos \lambda_1 - \cos \lambda_2\right) Q_{\rm PSR}$

$$\dot{N}_{\rm II} = M_{\pm} \dot{N}_{\rm GJ}$$

Model Schematic

Particle Transport (Boltzmann or Convection-Diffusion Equation)

$$\frac{\partial N_{e}}{\partial t} = -\vec{V} \cdot \left(\vec{\nabla}N_{e}\right) + \kappa(E_{e})\nabla^{2}N_{e} + \frac{\partial}{\partial E_{e}}\left(\dot{E}_{e,tot}N_{e}\right) - \left(\vec{\nabla}\cdot\vec{V}\right)N_{e} + Q$$

$$N_{e} = Q\tau_{eff} \qquad \tau_{eff}^{-1} = \tau_{ad}^{-1} + \tau_{diff}^{-1} + \tau_{1}^{-1} + \tau_{2}^{-1} + \tau_{rad}^{-1}$$

$$\tau_{ad} = \frac{3R_{0}}{c}\left[\frac{\partial\beta}{\partial\theta} + \beta\cot\theta\right]^{-1} \qquad \tau_{rad} = \frac{E_{e}}{\dot{E}_{e,rad}}$$

$$\tau_{1} = \frac{R_{0}}{c\beta\tan\theta} \qquad \tau_{2} = \frac{\tau_{ad}}{3} \qquad \tau_{diff} = \frac{R_{0}^{2}}{2\kappa}$$

Convection almost always dominates τ_{eff} but Doppler boosting compensates

Some Results

Models Case Study Black Widow B1957+20

ApJ 904:91, 2020

Van der Merwe, Wadiasingh, Venter, Harding & Baring;

Models Case Study Redback J2339–0533

ApJ 904:91, 2020

Van der Merwe, Wadiasingh, Venter, Harding & Baring;

Model SEDs - varying injection Case Study Redback J1723-2837

Van der Merwe, Wadiasingh, Venter, Harding & Baring;

Model SEDs - Flaring States Case Study Black Widow J1311–3430

Van der Merwe, Wadiasingh, Venter, Harding & Baring; ApJ 904:91, 2020

		B1957+20 (A)	B1957+20 (B)	J1723–2837 (Black)	J1723–2837 (Gray)	J2339-0533	J1311–34 Quiescent (Fl
Parameters	Symbols				Values		
Orbital separation ^a	$a (\times 10^{11} \text{ cm})$	1.95	1.95	2.90	2.90	1.25	0.597
Orbital period	$P_{\rm b}$ (hr)	9.17	9.17	14.8	14.8	4.6	1.56
Mass ratio	q	70	70	3.5	3.5	18.2	180
Pulsar mass	$M_{\rm psr}~(M_{\odot})$	1.7	1.7	1.7	1.7	1.7	1.7
Pulsar radius	$R_{\rm psr}~(imes 10^6~{ m cm})$	1.0	1.0	1.0	1.0	1.0	1.0
Pulsar period	P (ms)	1.60	1.60	1.86	1.86	2.89	2.56
Pulsar period derivative	\dot{P} (×10 ⁻²⁰ s s ⁻¹)	1.7	1.7	0.75	0.75	1.4	2.1
Moment of inertia of pulsar	$I \; (\times 10^{45})$	1.0	1.0	1.0	1.0	1.0	1.0
Inclination angle	i (deg)	65	85	40	40	54	60
Distance	d (kpc)	1.40	1.40	0.93	0.93	1.10	1.4
Companion temperature	$T_{\rm comp}$ (K)	8500	8500	6000	6000	6000	12,000 (45,0
Shock radius	$R_{\rm sh}/a$	0.4	0.2	0.4	0.4	0.3	0.4
Magnetic field at shock	$\boldsymbol{B}_{\mathrm{sh}}$ (C)	1.2	7.0	0.8	0.8	0.8	1.0 (1.2)
Pair multiplicity	$M_{ m pair}$	9000	9000	400	2000	500	600 (300
Maximum particle conversion efficiency	η_p	0.6	0.8	0.9	0.8	0.8	0.8 (0.9)
Acceleration efficiency	$\epsilon_{ m acc} = r_g/\lambda$	0.001	0.001	0.08	0.001	0.01	0.1 (0.01
Index of injected spectrum	p	2.5	2.4	2.5	1.4	1.8	1.4 (1.8)
Bulk flow momentum	$(\beta\Gamma)_{\rm max}$	4.0	5.0	6.0	7.0	7.0	5.0 (8.0)
Maximum shock angle	$ heta_{\max}$	61	68	60	50	55	65 (60)

Note.

^a This is a derived value using $a = (GM_{\rm NS}M_{\rm comp}P_{\rm b}^2(1+q)/(4\pi^2 q)^{1/3})$.

Table 1 Model Parameters for Illustrative Cases

Conclusion

- Millisecond pulsar binaries are a growing in number and are "clean" systems for understanding pulsars and pulsar winds
- We have a new multizone code which can predict SR and IC fluxes, or energy-dependent orbital modulation
- This constrains pulsar injection and particle acceleration parameters by anchoring on the X-ray
- SEDs should peak in the MeV and TeV some (all?) of spiders could be "gamma-ray binaries"
- IACTs particularly suited for time inverse Compton variability associated with flaring companions
- Exciting for CTA and AMEGO (or any other sensitive MeV telescopes)

