

ICRC 2021

Berlin | Germany

37th International **Cosmic Ray Conference**

15-22 July 2021

Felix Schlüter on behalf of the Pierre Auger Collaboration

Institute for Astroparticle Physics (IAP)

The AugerPrime Radio Detector

1661 dual-polarized Short Aperiodic Loaded Loop Antennas (SALLAs)

 Triggers from water-Cherenkov detector (WCD)

Prototype stations in field → Recording ambient noise

More details: First results from the AugerPrime Radio Detector: PoS (ICRC21) 207

Goal: Extends sky-coverage of mass-sensitive measurements

- **Very inclined air showers**: $65^{\circ} \leq \theta \leq 85^{\circ}$
- Highest energies: $lg(E / eV) \ge 18.8$

- Muons measured by WCDs
- Radio emission measured by SALLAs

Expected performance of the AugerPrime Radio Detector

End-to-end simulation study:

Monte-Carlo air shower simulations Full detector simulation Full & realistic event reconstruction Physics performance

Felix Schlüter - felix.schlueter@kit.edu

*Motivated from AERA F. Canfora, PhD Thesis

Felix Schlüter - felix.schlueter@kit.edu

*Motivated from AERA F. Canfora, PhD Thesis

Felix Schlüter - felix.schlueter@kit.edu

Felix Schlüter - felix.schlueter@kit.edu

 σ_{a} =5% motivated from AERA F. Canfora, PhD Thesis

Detection efficiency

- Min. 3 antennas with signal
- Strong dependence on zenith angle
 - Increasing footprint size
- Weak dependence on energy
- Nearly fully efficient for $\theta \gtrsim 70^\circ$ at higher energies

Aperture for a 3000 km² array

- For "contained events" aperture decreases with zenith angle
 - array projection (in shower frame) shrinks
- Constant aperture → full efficiency
- Good agreement with previous study
 B. Pont, Auger POS(ICRC2019)395

10-year event statistics

Shower reconstruction

- Fit 4 parameters*
 - Electronmagnetic energy E_{em}
- Selection applied
 - At least 5 signal stations, ...
 - Not equally efficient for all primaries
- Uncertainties underestimated

Shower reconstruction

- Resolution < 10% at higher energies</p>
 - Improves with energy expected due to noise

No dependency on mass

1.4

Relative number of muons

- Mass composition sensitive variables
 - Lighter primaries produce fewer muons
- Exp. exposure and two mass-composition scenarios*
- Higher statistics (w.r.t. FD) at highest energies
- Fluctuation less affected by systematic uncertainties → discrimination potential

Felix Schlüter - felix.schlueter@kit.edu

*AugerPrime Design Report arXiv:1604.03637

Event-by-event mass discrimination

- 50-50 p-Fe, with expected energy spectrum (events appear several times)
- Simple, energy-independent discriminator $R_{\mu} / E^{0.9}_{em}$ (~ Fisher analysis)
 - Good energy resolution critical!
 - FOM of 1.5 \approx separation with X_{max} and σ_{Xmax} = 15 g/cm²

Summary & Conclusion

ALCONT OF

End-to-end simulation study:

Monte-Carlo shower simulations, full detector simulation, measured background, realistic radio-based reconstruction

- Expected performance:
 - Event statistics: N(10y, IgE > 19) = 4105
 - Preliminary energy resolution: $\sigma_{E} < 10\%$
- Explored potential of hybrid measurements
 - Discriminate between composition scenarios
 - Discrimination between proton and iron / Contain a wealth of mass information

Backup

Expected performance of the AugerPrime Radio Detector

Energy reconstruction

• $\Theta > 68^{\circ}, n_{ant} > =5, ...$

Selection for good RD energy reconstruction

Selection bias for different primaries

p / 1996	Fe / 1979	All / 3975
1911 (95.7%)	1954 (98.7%)	3865 (97.2%)
1305 (68.3%)	1396 (71.4%)	2701 (69.9%)
1288 (98.7%)	1388 (99.4%)	2676 (99.1%)
1268 (98.4%)	1364 (98.3%)	2632 (98.4%)
1232 (97.2%)	1310 (96.0%)	2542 (96.6%)
1229 (99.8%)	1309 (99.9%)	2538 (99.8%)
1229 (100%)	1309 (100%)	2538 (100%)
1229 (100%)	1309 (100%)	2538 (100%)
1201 (97.7%)	1289 (98.5%)	2490 (98.1%)
1145 (95.3%)	1266 (98.2%)	2411 (96.8%)
1141 (99.7%)	1256 (99.2%)	2397 (99.4%)
1113 (97.5%)	1235 (98.3%)	2348 (98.0%)
1106 (99.4%)	1233 (99.8%)	2339 (99.6%)
1098 (99.3%)	1222 (99.1%)	2320 (99.2%)
	p / 1996 1911 (95.7%) 1305 (68.3%) 1288 (98.7%) 1268 (98.4%) 1232 (97.2%) 1229 (99.8%) 1229 (100%) 1229 (100%) 1229 (100%) 1229 (100%) 1201 (97.7%) 1145 (95.3%) 1141 (99.7%) 1113 (97.5%) 1106 (99.4%) 1098 (99.3%)	p / 1996Fe / 19791911 (95.7%)1954 (98.7%)1305 (68.3%)1396 (71.4%)1288 (98.7%)1388 (99.4%)1268 (98.4%)1364 (98.3%)1232 (97.2%)1310 (96.0%)1229 (99.8%)1309 (99.9%)1229 (100%)1309 (100%)1229 (100%)1309 (100%)1201 (97.7%)1289 (98.5%)1145 (95.3%)1266 (98.2%)1141 (99.7%)1256 (99.2%)1113 (97.5%)1235 (98.3%)1098 (99.3%)1222 (99.1%)

.

Simulation library

- 7972 p, He, N, Fe showers
 - p~ sin() ^ 2 from 65 85°
 - ▶ p_E ~ lgE from 18.4 to 20.1
- Simulated radio signals for stations within r_{max}()
- Malargüe October atmosphere
 - density profile & refractivity
- QGSJETII-04 / URQMD

Antenna-to-antenna variation for AERA Butterfly antennas

- After galactic calibration $c_i = \frac{1}{n} \sum_{j=\nu_1}^{\nu_n} \frac{A(\nu_i)}{\overline{A}_{\nu_i}},$
 - spread of the amplitudes in single antennas over all antennas for 1 periodic trigger event
 - Average over polarization
 - Average of RMS is 5%

Reference Scenarios

Figure 2.10: Examples of fluxes of different mass groups for describing the Auger spectrum and composition data. Shown are the fluxes of different mass groups that are approximations of one maximum-rigidity scenario (left panel) and one photo-disintegration scenario (right panel). The colors for the different mass groups are protons – blue, helium – gray, nitrogen – green, and iron – red. The model calculations were done with SimProp [30], very similar results are obtained with CRPropa [29].

Extract primary fractions

Use 10-years RD exposure

Arrival direction reconstruction

 RD: Spherical fit (point sources, spherical expansion, changing radius)

