

OBSERVATORY

Cosmic Ray Indirect – Contribution 915

Event-by-event reconstruction of Xmax with the Surface Detector of the Pierre Auger Observatory using deep learning

Jonas Glombitza on behalf of the Pierre Auger Collaboration

PoS(ICRC2021)359

Ultra-high-energy cosmic rays (UHECRs)

The Pierre Auger Observatory

- world's largest observatory to study ultra-high-energy cosmic rays
- hybrid detection of air showers
 - 1,660 water-Cherenkov detectors
 - 27 fluorescence telescopes

Mass composition of UHECRs

- currently: most precise mass estimate by reconstructing shower maximum $X_{\rm max}$
- determine composition by studying the measured $X_{\rm max}$ distributions

Reconstructing the shower maximum Xmax

- precise observation of $X_{\rm max}$ using fluorescence telescopes
 - observations confined to dark nights (15% duty cycle)
- challenging to measure with surface detector (SD)
 - no direct observation of $X_{\rm max}$ possible
 - measured time-dependent signals encode ٠ information about air-shower development
 - \rightarrow use deep learning to estimate $X_{\rm max}$

Deep-learning based reconstruction of Xmax using the Surface Detector

SD provides measurement of:

- time-dependent signals
- arrival time of first shower particles
- use deep neural network to reconstruct shower maximum

Reconstruction strategy:

- (1) process time-dependent signal traces using recurrent networks (LSTMs)
- (2) process shower footprint
 - exploit symmetry of the SD using hexagonal convolutions (ArXiv/1803.02108)

Network training

- \sim 1.5 million parameters
- training on GPU \sim 1-2 days
- mimic different detector states
 - broken stations, broken PMTs
 - various electronic saturations

Xmax reconstruction using deep learning Glombitza | RWTH Aachen | ICRC 2021

	Epos LHC
# Showers	800,000
Training	700,000
Validation	10,000
Test	90,000
Energy log ₁₀ (E/ev)	18.0 – 20.2
Spectrum	E ⁻¹
Composition	25% proton 25% helium 25% oxygen 25% iron
Zenith	0 – 65°

DNN trained on EPOS-LHC only!

Validate on EPOS-LHC, QGSJetII-04, Sibyll2.3c

Evaluation – EPOS-LHC

DNN trainined using EPOS-LHC

- evaluation using EPOS-LHC
- performance improves with energy
- above 10 to 20 EeV
 - bias vanishes ٠
 - proton resolution ~30 g/cm² ٠

30

20

10

-20

-30

 ${\rm g\,cm^{-2}}$

- iron resolution ~20 g/cm²
- averaged among compositions
 - overall bias ~ 0 g/cm²

Evaluation - additional interaction models

DNN trained using EPOS-LHC Evaluation using:

- QGSJET-II.04
- SIBYLL2.3c
- similar resolution
 - interaction model independent
- bias different
 - mean negative for both models
 - Xmax scale of the DNN depends on interaction model

III. Physikalisches

Reconstructed Xmax distributions

- check reconstructed Xmax distributions for various hadronic models
- absolute bias clearly visible, as expected (Sibyll2.3 = -15 g/cm²)
- overall shape reconstructed correctly
- $\textbf{\textbf{\textbf{-}}}$ calibration to $X_{\max}\textbf{\textbf{-}}$ scale of the FD needed for measuring X_{\max} distributions

Glombitza | RWTH Aachen | ICRC 2021

Event-wise composition measurements

Merit factor for discriminating between proton and iron

$$f_{\rm MF} = \frac{|\langle X_{\rm max,P} \rangle - \langle X_{\rm max,Fe} \rangle|}{\sqrt{\sigma^2(X_{\rm max,P}) + \sigma^2(X_{\rm max,Fe})}}$$

- merit factor of simulated $X_{
 m max,MC}$ ~ 1.5
- DNN merit factor increases with energy
 - above 10 EeV, merit factor = 1.5
 - good separation for all interaction models

Application to hybrid data

Jonas Glombitza on behalf of the Pierre Auger Collaboration

Calibration to account for detector ageing -

Ageing of detector stations slightly affects signal shapes

- width of muon signals decays over time
- detector monitoring records evolution of $\langle A/P
 angle$
 - ratio between signal area and signal peak
- perform linear calibration with respect to $\langle A/P
 angle$
 - ageing effect removed

III. Physikalisches

Long Term Performance of the Pierre Auger Observatory https://doi.org/10.22323/1.358.0222

11

Application to measured hybrid data

Use hybrid events to perform calibration to the FD $\,X_{
m max}\,$ scale

- correlation 0.63 (0.61 when corrected for elong. rate)
- resolution matches expectations, at 10 EeV below 30 g/cm²
- -30 g/cm² bias (hadronic models, detector simulation)
 - * independent of energy \rightarrow perform calibration

Xmax reconstruction using deep learning Glombitza | RWTH Aachen | ICRC 2021

12

ArXiv/2101.02946

Conclusion

Deep-learning based reconstruction of $X_{\rm max}$ using the SD (ArXiv/2101.02946)

- reconstruction extensively studied on various hadronic interaction models
 - $X_{
 m max}$ -bias depends on interaction model used
- event-by-event resolution independent of interaction model
- performance validated on golden hybrids
 - + bias of -30 g/cm² observed \rightarrow DNN calibrated to the FD X_{max} scale
 - observed resolution meets expectations from simulation studies
- very promising results to measure X_{max} -distributions to the highest energies • new insights into the UHECR composition at highest energies!
 - new prospects for analyses requiring event-by-event estimation of primary mass
- AugerPrime will allow for additional cross-checks and improvements

Xmax reconstruction using deep learning Glombitza | RWTH Aachen | ICRC 2021

Event-by-event reconstruction of Xmax with the Surface Detector of the Pierre Auger Observatory using deep learning

Backup

Jonas Glombitza on behalf of the Pierre Auger Collaboration

Data

- Data from 01.01.2004 till 31.8.2018
- SD selection
 - Log₁₀(E/eV) > 18.5
 - Zenith angles below 60 degrees
 - Only events in which the station with the highest signal is surrounded by a hexagon of operating stations
 - include events with saturated stations

FD selection

- Same as used for the $X_{\max}\,$ measurements with the FD
- → Full sample: 3124 events

Merit factor for the simulated Xmax

Air-Shower Detection

Cosmic-Ray induced Air Showers

- cosmic rays interact with Earth's atmosphere
 - induce extensive particle cascade
- particle shower reach size of several km² at Earth's surface
- particle mass determines shower structure
 - $\label{eq:low}$ low mass, deep penetration \rightarrow late maximum
 - heavy mass, early maximum
- many different detection techniques

Xmax

shower maximum correlates with primary mass

Xmax reconstruction using deep learning Glombitza | RWTH Aachen | ICRC 2021

The Pierre Auger Observatory

- world's largest cosmic-cay observatory
- placed in Argentina
- measure high-energetic particles
 - energy > 10¹⁷ eV
- study composition of cosmic rays
- search for cosmic-ray origins

hybrid measurements of UHECRs

- 27 fluorescence telescopes at 4 sites
 - 15% duty cycle

19

- 1660 water-Cherenkov stations
 - 3000 km² array, ~100% duty cycle

RNN part extracts trace features

- **same network** (same weights) for each station
 - > same kind of features (same color) per station (features, e.g., rising edge, falling edge, peaks, etc.)
 - > but different characteristic \rightarrow different strength

Xmax reconstruction using deep learning Glombitza | RWTH Aachen | ICRC 2021

20

(1)

