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1. Introduction

The simulation of cosmic ray air showers is a computationally expensive process. This work
illustrates how shower universality can be used to simulate the Cherenkov light profile of cosmic
ray air showers. The CHASM python module was developed for all shower geometries and profiles,
and is intended to be a computationally efficient alternative to Monte Carlo air shower simulation
packages like CORSIKA. CHASM is still in development. This work is meant to showcase its
current progress and functionality. We present simulations of Cherenkov distributions from various
shower types, as well as comparisons to CORSIKA’s IACT (Imaging Atmospheric Cherenkov
Telescope) extension.

2. What is Shower Universality?

Shower universality is the principle that properties of secondary particles in an air shower such
as propagation direction, energy, and lateral spread can be represented by universal parameterized
distributions [1] [2]. These parameterizations vary as a shower develops and take into account
secondary particle properties such as energy (i.e. the directional distribution of particles in a given
energy interval will be narrower for higher energies). Charged particles in a shower will produce
Cherenkov light in a cone determined by particle energy and the atmospheric index of refraction
in which they propagate. Published fits to secondary particle distributions were used to create a
table of Cherenkov angular distributions at various atmospheric indices of refraction and stages of
shower development. CHASM generates a shower profile in the Earth’s atmosphere, then accesses
the Cherenkov table to calculate the photon yield at user defined locations.

3. NICHE (Non Imaging CHErenkov) and TALE (Telescope Array Low Energy)

An efficient Cherenkov signal simulation will enable a hybrid analysis of the low-energy
cosmic ray spectrum using data from both the TALE fluorescence detector and the NICHE (Non
Imaging CHErenkov) detectors near the Middle Drum telescope site. In Figure 1 we see the NICHE
array relative to the position of the Middle Drum observatory, lying directly beneath TALE’s field
of view. The NICHE detectors are simple light buckets consisting of a PMT (Photo-Multiplier
Tube) sensitive to Cherenkov light between 300 and 450 nm. There is currently an analysis being
performed looking for coincidence events between NICHE and TALE. In Figure 2, we see a sample
NICHE event with the Cherenkov signal sweeping diagonally through the array.

4. Universality vs. CORSIKA

To demonstrate the veracity of the Cherenkov universality model, we generated a Cherenkov
light profile using universality, and compared it to a profile generated by CORSIKA’s IACT exten-
sion. This downward proton shower has a primary energy of 108 GeV, -maxat 863 g/cm2, #maxof
67 million particles, and a polar angle of 10 degrees. -maxand #maxrefer to the atmospheric depth
at shower maximum and the maximum number of secondary shower particles, respectively. IACT
counters were defined at the altitude of the lowest Telescope Array NICHE counter (1564 m above
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Figure 1: Left: the orientation of the NICHE array with respect to the Middle Drum observatory. Right:
One of the NICHE counters with Middle Drum in the background

Figure 2: Event display for NICHE event. The circle size of each triggered detector is scaled by the signal
pulse area. The time of each trigger is represented by its color.
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Figure 3: Left: Comparison of Cherenkov lateral distribution from both CORSIKA and universality. Right:
Comparison of arrival time distribution from both CORSIKA and universality.

sea level). The total number of photons collected at increasing distances from the shower core are
shown in Figure 3, and the arrival time distributions are compared for a counter 70 m from the
shower core in Figure 3.

5. Hypothetical Tau Primary Upward Air Shower

The first iteration of CHASM is being tested for implementation in nuSpaceSim, a compre-
hensive neutrino simulation package for space-based and suborbital experiments [3]. Tau neutrinos
skimming the Earth may interact via the charged-current interaction in the Earth’s crust. The result-
ing tau particle leaves the Earth and decays, serving as the primary particle in an upward going air
shower. For this demo, an upward shower profile was generated using the Gaisser-Hillas function
with an -maxof 785 g/cm2, an #maxof 80 million particles, and a first-interaction height of 10 Km.
The resulting Cherenkov light was calculated at an array of locations normal to the shower axis at
an altitude of 525 km. Figure 4 shows the shower orientation, as well as the x and z axes of the
coordinate system used by CHASM. The origin is where the shower axis intersects with the Earth’s
surface. Standard physics spherical coordinate conventions apply for the shower polar angle.

Figure 4 is a plot of the Cherenkov signal at the counter plane. Each pixel represents one
photon counter location. The ring where the maximum signal is found forms due to the shower’s
Cherenkov cone at development stages near -max.

6. Atmospheric Curvature and Photon Timing

As photons propagate in the atmosphere to the counting location, they are delayed compared
to the speed of light in a vacuum. For downward showers, it is sufficient to divide the delay a
vertically traveling photon would experience by the cosine of its polar angle. In the context of
orbital observations (nuSpaceSim), photons propagate for thousands of kilometers in the upper
atmosphere before they enter the vacuum of space. As the photons get higher, their angle of
propagation with respect to the atmosphere becomes steeper compared to their polar angle with
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Figure 4: Top: Diagram of an upward air shower axis showing the orientation of an orbital counter array.
Bottom: Cherenkov light signal at an orbital counter array normal to the shower axis at an altitude of 525
km.
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Figure 5: Left: Diagram of the geometry used to account for the curvature of the atmosphere in upward
shower timing calculations. Right: Comparison of arrival time distribution when atmospheric curvature is
neglected and accounted for.

respect to the original z-axis. This difference was calculated as a function of atmospheric height
via the law of cosines on the inscribed triangle in Figure 5 and equation 1.

For the upward shower shown in Figures 4 and ??, there is about a seven nanosecond delay if
the curvature of the atmosphere is neglected. Figure 5 shows the both the original and corrected
arrival time distribution at one of the counters in the ring peak.

cos \ ′ =
ℎ2 + A2 + 2'ℎ

2A (' + ℎ) (1)

7. Discussion

While comparisons between our model and CORSIKA are consistent for most regimes, we
see disagreements in total Cherenkov production close (within 50 m for downward showers) to the
center of the shower’s footprint, as well as inconsistent arrival times for photons produced in early
shower stages. Perturbations to the model are necessary to compensate for these differences, which
mainly result from our approximation of Cherenkov production being localized to the shower axis.
In reality, secondary charged particles spread out in space, and those travelling in between the axis
and a counter will generate a light signal slightly sooner than our model predicts. Future iterations
of CHASM will contain methods for smoothing out these inconsistencies.
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