An extensive study for correcting the nonlinear particle density measured by GRAPES-3 scintillator detectors

Introduction

- Located at Ooty, India at 11.4° N latitude, 76.7° E longitude and an altitude of 2.2 km amsl.
- 400 (1 m²) plastic scintillation detectors with 8 m inter-detector separation.
- 105 dual-PMT scintillator detectors.
- Tracking muon telescope (560 m²).
- Total area covered 25,000 m^2 .
- \sim 3 million air shower events/day.

Figure 1. GRAPES-3 Air Shower Array

GRAPES-3 Plastic Scintillator Detectors

Cone Type Detectors

Figure 2. A Cone Type Detector, which is the first design @ GRAPES-3

Fiber Type Detectors

Figure 3. A Fiber Type Detector, which has two more types of configuration; one in which a single-PMT is attached and another 2-PMTs are attached

Anuj Chandra¹

¹Department of Physics, Aligarh Muslim University, Aligarh - 202 002 On behalf of GRAPES-3 Collaboration, Cosmic ray Laboratory, Ooty, TIFR

Observed Density Spectrum

- Particle Density Spectrum (HG-PMT): Follows a single slope \sim 50 particles.
- After 50 particles, spectrum starts following non-linearity.
- Then, after 200 300 particles, saturation region.

Figure 4. Observed Particle Density Spectrum

Correction Method

Figure 5. Left: Extraolation of particles, Right: Variation of Corrected Vs UnCorrected Density

- For NonLinearity Region (Model 1): $Y_1 = 50 + A \times (e^{(B(x))})$
- For Saturation Region (Model2): $Y_2 = p_0 + p_1 x + p_2 x^2 + p_2 x^2$

References

- 1. S.K. Gupta et al., Nuclear Instruments and Methods in Physics Research A 540 (2005) 311–323.
- 2. P.K. Mohanty et al., Astroparticle Physics 31 (2009) 24 36.
- 3. A. Chandra et al., PoS (ICRC2017) 479.
- 4. A. Chandra et al., PoS (ICRC2019) 212.

Results and Discussion

$$(x-50)+C(x-50)^2) - 1)$$

- $p_3x^3 + p_4x^4 + p_5x^5$

- Correction methods are applied in two cases as shown as below:
- Left side panel, corrected with only NonLinearity model 1, i.e. slowly varrying function.
- Left side panel, corrected with only Saturation region with model2, i,e. polynomial of 5th order. In this case, the corrected density is extended to higher vales as compared to model 1.

Figure 6. Left: Correction when only Model1 is used; Right: Correction when combined Model1+Model2 is used.

• A Density spectrum corrected with Model1+Model2 is compared with the observed density spectrum from the LG-PMT fo the same detector. Where corrected density spectrum is in good agreement with the observed density spectrum upto the particle density \sim 5000 m⁻².

Figure 7. Corrected desnity spectrum of a HG-PMT is compared with density observed from LG-PMT

- Correction when using only Model1 is limited upto particle densities \sim (500 800) m⁻². • Correction when using combined Model1+Model2 is extended upto particle densities \sim 3000
- m^{-2} .
- This later is compared with the observed densities and hence, correction shows a good agreement with observations.

Conclusions