ICLE PHYSICS CONFERENCE Berlin | Germany 37th International Cosmic Ray Conference 12–23 July 2021

ICRC 2021

The Theory of Efficient Particle Acceleration at Shocks

Damiano Caprioli University of Chicago

In collaboration with C. Haggerty (IfA, University of Hawaii) and P. Blasi (GSSI, L'Aquila)

The SNR paradigm for the origin of CRs

Energetics: ~10% of SN kinetic energy can account for Galactic CRs (Baade-Zwicky34)

Mechanism: Fermi acceleration at SNR shocks is *first-order* and produces powerlaws. Diffusive Shock Acceleration (DSA) (Krimskii77,Axford+78,Bell78,Blandford-Ostriker78)

Evidence of B field amplification: selfgenerated scattering enhances the energization rate (e.g., Bamba+05, Völk+05, Parizot+06, Morlino+12, Ressler+14, etc)

SN in NGC4526

Downstream

Upstream

Non-Linear Diffusive Shock Acceleration

SA yields momentum power laws $f(p) \propto 4\pi p^2 p^{-q}$ The slope q depends only on the shock compression $q = \frac{3R}{R-1};$ $R = \frac{\gamma+1}{\gamma-1} \simeq 4; \rightarrow q = 4$ for strong shocks The CR pressure makes the adiabatic index γ smaller and induces a shock precursor Particles "feel" different compression ratios: spectra should become concave If acceleration is efficient, high-energy particles feel $R_{tot} > 4$ and their spectra must be flat, i.e., q < 4

(e.g., Jones-Ellison91, Malkov-Drury01 for reviews)

Efficient DSA should return: Compression ratios R > 4; \sim CR spectra flatter than p^{-4} (flatter than E^{-2} for relativistic particles) Observations, instead, point to significantly steeper spectra: • Hadronic γ -rays from historical and middle-age SNRs: $q \sim 4.3 - 4.7$ (e.g., Caprioli11,12; Aharonian+19); Synchrotron emission from radio SNe: $q \sim 5$ (e.g., Chevalier-Fransson06, Bell+11); • Propagation of Galactic CRs suggests source spectra with $q \sim 4.3 - 4.4$ (e.g., Blasi-Amato11a,b; Evoli+19).

Hybrid Simulations of Collisionless Shocks

dHybrid code (Gargaté+07; Caprioli-Spitkovsky13-18), now dHybridR (+relativity; Haggerty-Caprioli19)

Time = $880.00 [1/\omega_{o}]$

DENSITY + PARTICLES

5

DSA Efficiency

Acceleration depends on the shock inclination

BO

 ϑ

Vsh

B amplification and ion acceleration where the shock is parallel

X-ray emission: red=thermal white=synchrotron

Caprioli-Spitkovsky14a,b,c

6

CR-modified Shocks: Enhanced compression!

Hybrid simulations (Haggerty-Caprioli20) Time (Ω_c^{-1}) 200 400 600 800 1000 Substitution Efficiency $\leq 15\%$ at parallel shocks 0u/u Second Formation of upstream precursor 2 R increases with time, up to ~ 6 2000 1000 3000 4000 5000 6000 $X d_i$ $R \sim 6 - 7$ inferred in Tycho (Warren+05). In SN1006: $R \sim 4 - 7$, modulated with the azimuth/ shock inclination (Giuffrida, Miceli, Caprioli+21, submitted to NatComm) \oslash If $R \simeq 7 \rightarrow q_{\text{expected}} \simeq 3.5$ Chandra θ=0° • Tycho: radio to γ -ray observations: ion ratio $q_{\rm inferred} \simeq 4.3$

θ=90°

A challenge to DSA theory!

θ=122°

The Role of Amplified Magnetic Fields

• Upstream: $w_1 \simeq -v_{A,1}(\delta B_1) \ll u_1$

 B fields (and hence CRs) drift downstream with respect to the thermal gas
 First evidence of the formation of a postcursor CRs feel a compression ratio smaller than the gas

$$R_{cr} \simeq \frac{u_1}{u_2(1+\alpha)} < R_{gas}$$

A Revised Theory of Diffusive Shock Acceleration

Caprioli, Haggerty & Blasi 2020

With the effective compression felt by CRs $q = \frac{3R_{cr}}{R_{cr} - 1} = \frac{3R_{gas}}{R_{gas} - 1 - \alpha} > q_{DSA}$

CRs feel R_{cr} < R_{gas}: the power-law index is not universal, but depends on B field
Ab-initio explanation for the steep spectra observed in SNRs, radio SNe, CRs...
Also see Highlight Talk by R. Diesing (ID:488)

