

1. Simulation of the underground muon detector (UMD)

73 × 3 buried modules	1 r • 1
Two readout channels: • Binary (low muon density) • ADC (high muon density)	· 6 · 6
Detector scheme	Sin
Scintillator + optical fiber	PE genera
SiPM	Muon gener

Adders +

Amplifiers

ADC

Pre amplifier +

Fast shaper +

Discriminator

FPGA

Simulating the signal of the AMIGA underground detectors of the Pierre Auger **Observatory**

A. M. Botti^{a,b}, F. Sánchez^a, M. Roth^c, E. Etchegoyen^a

- a. Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
- b. Departmento de Física, FCEyN, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- c. Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany

Abstract: We present a detailed description of the simulation development and validation for the underground muon detector signal of the Auger Muons and Infill for the Ground Array (AMIGA) system, a lowerenergy enhancement at the Pierre Auger Observatory. To this aim, the detection system was thoroughly characterized in the laboratory. It consists of plastic-scintillator strips with optical fibers that conduct light towards silicon photomultipliers whose output is then processed with two complementary read-out channels. These measurements allowed us to design a fast and reliable simulation chain that fully reproduces the signal of single muons impinging on the scintillators.

Figure 1: (schematics of the UMD detector components (left), of the simulation steps (middle) and summary of the data used to develop and validate the simulation (right).

Binary transfer

Sampling

2. PE generator Ο

Photo-equivalent (PE) generator: · 7-parameter model · fit to analog dark counts

Figure 3: Mean single-PE signal. (Inset) 2000 simulated single-PE pulses. (Bottom) total difference between simulation and data.

module:

- 10 m² scintillator detector
- 64 strips + optical fibers
- 54 silicon photomultipliers (SiPM)

80 Time / ns

3. Muon generator

Number of PE with double exponential decay law

Convolution of scintillator and fiber start times to determine timing

Validations performed as a function of fiber length (distance) between muon and SiPM

Main features for detector performance:

- · Amplitude (binary)
- · Charge (ADC)
- · Full width at half maximum

Figure 4: (Left) example muon signal at 2 m on the scintillator strip. (Right) muon signal charge as a function of the signal amplitude.

Figure 5: (Top-left) muon signal charge. (Top-right) muon signal amplitude. (Bottom) muon signal full width at half maximum.

SUMMARY

- ✓ Simulation of UMD signal completed
- ✓ Good agreement between simulation and data for binary and ADC main features
- ✓ 98.5% efficiency for single-muon signals
- ✓ Saturation at ~350 simultanous muons per 10 m² module

4. Binary acquisition mode

Two amplitude thresholds tested

98.5% efficiency with 2.5 PE

Reconstruction strategy depends on signal width

Efficiency loss as expected from amplitude threshold

Figure 6: muon signal width (left) and muon detection efficiency (right).

Amplitude / mV

5. ADC acquisition mode

Two amplification channels tested (low- and high-gain)

Reconstruction strategy depends

on signal charge

Up to ~350 simultanous muons with LG

Figure 7: expectations for sub-GeV dark-matter detection with skipper-CCDs compared with current limits (gray and cyan shadows) for light (left) and heavy (right) mediators. Adapted from OSCURA at SNOWMASS

More information and references <u>here</u>