Optimization of CoREAS simulations for the GRAND project

Chao Zhang*, Tim Huege, Tanguy Pierog for the GRAND Collaboration

37th International Cosmic Ray Conference 12–23 July 2021

The GRAND project

2

1. Investigation of representative atmosphere for GP300 site

GDAS data analyzed with gdastool

Karlsruhe Institute of Technology

Chao Zhang - chao.zhang@kit.edu

2. A CoREAS library for GRAND

Energy: 12 bins from 2.154e+16 to 1e+20 eV.

B field in Lenghu: {Bx,Bz}={26.927785,42.154416}mT

Azimuth angle: {-180°,-135°,-<u>90°,-45°,0°,45°,90°,135°</u>}

Zenith angle: 65° - 87°

Thinning = 10⁻⁶

Work on bWunicluster

Nodes=5, ntasks-per-node=20, time=12:00:00

- > 5012 air showers prepared until now (Proton and Iron)
- Simulated radio signal for 240 antennas (star-shaped pattern)
- Upward and skimming tested
- Neutrino library to be added later

Chao Zhang - chao.zhang@kit.edu

3. Adaptation of CORSIKA7 for upward-going showers and its validation

downward going air shower

Upward-going neutrino

Chao Zhang - chao.zhang@kit.edu

Test a. Longitudinal distributions

Iron air shower (downward / upward) $E_0 = 1.000e + 07GeV$, thinning = 1.0e - 06

Test b. Energy fluence

Chao Zhang - chao.zhang@kit.edu

Karlsruhe Institute of Technolog

Test c. Integral of energy deposit

Proton air shower

-			lower air density	Altitude	$E_{dep}[eV]$	E _{dep} [eV]	
Iron air shower				[m]	30-80 MHz	50-200 MHz	
Altitude	$E_{dep}[eV]$	E _{dep} [eV]	~100 km		Downward		
[m]	30-80 MHz	50-200 MHz		1	$1.176 \cdot 10^{3}$	$2.238 \cdot 10^{3}$	
Downward				Upward			
1	$8.195 \cdot 10^2$	$1.512 \cdot 10^{3}$		15000	$1.215.10^{3}$	$2 420.10^{3}$	
400	$8.117 \cdot 10^2$	$1.491 \cdot 10^{3}$		15500	1.215 10	2.120 10	
600	$8.111 \cdot 10^{2}$	$1.488 \cdot 10^{3}$		15500	1.225.103	2.452·10 ³	
800	$7.970 \cdot 10^2$	$1.449 \cdot 10^3$		16000	$1.228 \cdot 10^{3}$	$2.470 \cdot 10^3$	
886	$7.513 \cdot 10^2$	1.369·10 ³	~12 km	30000	$1.098 \cdot 10^{3}$	$2.056 \cdot 10^3$	
Upward							
11000	$7.127 \cdot 10^2$	$1.333 \cdot 10^{3}$		Close er	erav denosits	(but not	
11500	$7.981 \cdot 10^2$	$1.522 \cdot 10^{3}$	exactly the same) at comp				
12000	$7.834 \cdot 10^2$	$1.513 \cdot 10^{3}$	~800 m	stages o	stages of air shower development.		
13000	$7.846 \cdot 10^2$	$1.537 \cdot 10^{3}$			GUNIYA		
15000	$8.247 \cdot 10^2$	$1.553 \cdot 10^{3}$					
3 18000	$8.082 \cdot 10^2$	$1.513 \cdot 10^{3}$	nigner air density Chao Zhang - chao.zhang@kit.edu				

Conclusions

- 1. The GP300 site is located in a very stable atmosphere and the refractive index is on average lower than at other radio detection sites.
- 2. A library of down-going CoREAS-simulated air showers was created with the best knowledge of GRAND.
- 3. Testing methods in terms of particle and radio simulations have been developed and they validated the adapted version of CORSIKA7 for upward-going showers.
- 4. An SNR analysis using CoREAS shows that it will be very difficult to detect air showers below 10¹⁶ eV with the testing layout of GP300, but it might be possible if the zenith angle is not too large.

