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Detector Modules
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H2 hodoscope'

S3 scintillator

- Two, nearly identical, independent modules (shown mounted left, expanded view right)
- Each contains two scintillating fiber hodoscope planes (for particle trajectory), three scintillation

+  detectors (for charge), and two C nkov detectors (for charge and energy)
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Crossplots of the corrected signals (Makoto Sasaki, GSFC) from the scintillation
and Cherenkov detectorﬁ eveal formation of charge bands ..
Want to be able to assign charge where charge bands are not visible
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k=4l Charge Assignment Method
- Above- and Below-C0 Methods

Scintillator vs Acrylic Cherenkov Acrylic Cherenkov vs Aerogel Cherenkov
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- Acut on the C1vsCO crossplot separates the Above- and Below-CO datasets
- Region to left of line (Ae_?gggl threshold) is well resolved in the Below-CO dataset =
- Allows charge determination over most of the GCR energy range Nathan Walsh pg. 7
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Charge Assignment Method

- Band Spacing Charge Dependence
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- Charge band fitting determines Z dependence of detector signals for every angle bin

-  Different methods for Aboye-CO (right) and Below-CO (left) are extrapolated to higher S
signal space where high-Z events appear, but charge bands are not visible Nathan Walsh pg. 8
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Charge (Z) Charge

- Z>40 shows well defined peaks at even-Z elgménts but very low statistics and lack of
clear element resolution at odd-Z elements
- Z=46&48 low relative to surrounding peaks (possible gain matching issue under
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E ST TOA Even-Odd Pairs

% HEAO-HNE & Ariel (Binns 1989)

Solar System {Lodders 2003)

Abundance (Fe=1E6)
=
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8
- Of particular interest is the consistency between the newly measured charge range

and satellites HEAO-3 & Ariel that did not have individual element resolution and thus

r measured odd even charg% rs - — o —
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- The GCRS abundances suggest that the prc;?;ential acceleration of refractory
elements by OB SNe seen for GCR with Z<40 does not appear to hold for Z>40
- Large statistical error bars on odd-Z>40 elements due to very low statistics
- Will be elevated by uncorreq:gj:econdaw contributions from even elements R
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- The GCRS abundances suggest that the pr?ential acceleration of refractory

elements by OB SNe seen for GCR with Z<40 does not appear to hold for Z>40
- Showing only even-Z>40 elements, it appears that the volatiles are bumped up to the
refractory line e - = =
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Possible r-Process Enhancement?

- Breakdown of volatility based preferential

10°

§ ._sz* : 1 ‘Re’f ) o roroses). Y SN shock acceleration model suggests that
’ o]\ i - & there is either a different production site or
= | N —F® oy acceleration mechanism for Z>40
:2;10,_ i rlace . SRRV, ¢ 2 d - All volatile elements with Z>40 have a large
@ . v (U R 2 o r-process component
g 1024 . .o -" : - ACE-CRIS isotope measurements show a
€ JReRefacoy & " a4 \ deficit of r-process GCR in the 30<Z<40
< mwo'aﬂe,« e ] range, but perhaps there is an excess of
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Binns (private communication)
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ik SA BNSM r-Process Production
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- Binary neutron star mergers (BNSM), are

10°
= M =003M known to produce vast amounts of
10" [1Solar — M 01N r-process nuclei in a single event
8 o2 1 & ’ M:'“:()M‘ (LIGO/Virgo 2017 BNSM gravitational
S ...:’,*. > 81 wave detection)
& o ,;-:h%-.ﬁ 7 Ty 3 u - SomeBNSM models suggest that these
g W ”"‘5\ E W e events alone can account for the solar
= 10 v b r-process abundances
i b - For Z<40 (A<~90) BNSM r-process
80 100 120 140 160 180 200 220 240 pl"OdUCtiOﬂ falls orr
A - Itis interesting that this BNSM fall-off
Just et al. 2015 ocedrs at Z=~40, which is the point where
the GCR source model appears to
change
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Atmosphere and ISM

Top-of-Instrument

- Assume S1,S2 consistency

cuts removed all

charge-changing interactions

Nroi(Z) = Nins(Z) Hvxp

- Losses accounted for by
adding these interacted
events back in

- Instrument material thickness
x, are weighted averages of
material seen by Above- and

Below-CO events

ri(secr,

Ai(Z

Top-of-Atmosphere

Atmospheric interaction
correction performed by Brian
Rauch (Wash U)

Iterative process that starts
with an assumed set of TOA
abundances and adjusts them
until they yield the measured
TOIl abundances

Losses given by total
charge-changing cross
sections

Gains given by partial
charge-changing cross
Seéctions

Witk =4l Corrections for Interactions in the Instrument,

GCR Source

ISM interaction and energy
loss correction performed by
Mark Wiedenbeck (JPL)
Leaky-box based calculation
accounts for losses and gains
due to total and partial
charge-changing interactions,
radioactive decay paths and
energy losses
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