Modelling uncertainties in GeV - TeV flux predictions of Galactic globular clusters

Christo Venter, Hambeleleni Davids, Andreas Kopp and Michael Backes

What is this contribution about?

Using a leptonic model that invokes host millisecond pulsars in globular clusters as sources of relativistic particles, we demonstrate that uncertainty in model parameters leads to a large spread in the predicted gamma-ray flux for such clusters.

Why is it relevant / interesting?

This has important implications for the observational strategy of the CTA, indicating that one should be careful to summarily dismiss a model based on linear scaling only, but should also take note of uncertainties in predicted flux linked to uncertain model parameters.

What have we done?

We performed three case studies, predicting (i) the gamma-ray integral flux for a population of clusters (confronting upper limits by H.E.S.S.); (ii) differential flux for M15 (for which MAGIC recently derived stringent differential flux upper limits) and (iii) differential flux for ω Cen (from which five pulsars have recently been detected at radio frequencies).

What is the result?

We could non-uniquely constrain several population-averaged cluster parameters, and also demonstrate the need to increase measurement accuracy on key model parameters to improve precision in predictions of cluster fluxes.