

Direction Reconstruction using a CNN for GeV-scale Neutrinos in IceCube

Shiqi Yu Michigan State University ICRC 2021

(yushiqi2@msu.edu)

The IceCube Neutrino Observatory

- Cosmic ray atmospheric interactions abundant source of neutrinos
- O(10⁴) km baseline (L) inferred using arrival direction (zenith)
- Neutrino interactions in ice produce particles emitting Cherenkov radiation
- Optical modules detect photons, denser instrumented DeepCore detects O(GeV) events

Event Display

Track-like Event: ν_{μ} charged-current interaction (CC) and 17% ν_{τ} CC

 $\nu_{\mu(65.4GeV)} \rightarrow \mu_{(62.7GeV)}^- + hadrons$

Cascade-like Event:

- Neutral current interaction
- + ν_e CC and 83% ν_{τ} CC

 $\nu_{e(67GeV)} \rightarrow e_{(57.5GeV)}^- + hadrons$

Time [*µs*]

0

Zenith Reconstruction

Input: sum of charges; time of first (last) hit; charge weighted mean (std.) of time.

8 DC (or 19 IC) strings x 60 DOMs x 5 variables

-300

-400

Output: value of zenith from 0 to π

Summary and Future

1e-4

Time (s) /Event	GPU	CPU	1.6- 1.4- 원 1.2-	CNN events = median = RMS = 0.
CNN	0.0044	0.108	e 1.0- 6 0.8- 1.0-	Likelihoo median = RMS = 0.
Likelihood-based	—	44.97	0.6 - 0.4 -	
			0.2	-1.5 -1.0 -0.5 0.0 0.5 1.

- Up to 10,000 times faster than current processing
- Improved overall RMS by 2.5%
- Comparable bias against true and reconstructed cos(zenith)
- Investigating improvements to systematic uncertainties

IceCube Work in Progress