#### Updates from the OVRO-LWA: Commissioning a Full-Duty-Cycle Radio-Only Cosmic Ray Detector

#### Kathryn Plant Andres Romero-Wolf, Washington Carvalho, Konstantin Belov, Gregg Hallinan





















#### Motivation:

- Objective: use composition across the second knee to probe Galactic to extragalactic transition
- OVRO-LWA 2000 cosmic rays per year, 10^17-10^18 eV
- Expect Xmax uncertainty <20g/cm^2</li>



Plot: H. Dembinski ICRC 2019 in F. Schroeder rapporteur summary.

#### The Long Wavelength Array at the Owens Valley Radio Observatory



 Extrasolar space weather, cosmic dawn, solar flares, cosmic rays and more

- 256 dual polarization
   antennas → 352 antennas
- Baselines up to 1.5 km →2.4 km
- 12—85 MHz



#### Array Layout and Simulated Radio Footprint



# With the stage II array, Monroe et al. 2020 detected 8 cosmic rays with 40 hours of observing.



# The array upgrade involves all new digital signal processing hardware.

SNAP2 boards with Xilinx Kintex Ultrascale+ FPGAs



Each board triggers on radio signal from its subset of antennas, then transmits trigger to all the other boards.



#### RFI Mitigation strategy uses distant antennas to veto.



### Remaining RFI Rejection will be performed on CPU



#### Summary of Radio-Only System



| Detection Part 1                                                                                                                                                                                          | Detection Part 2                                                                                                                                                                                                                                                                                    | Analysis                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <ol> <li>Detect impulse<br/>signal.</li> <li>Compare nearby<br/>antennas.</li> <li>Reject events seen<br/>by distant antennas.</li> <li>Trigger whole array<br/>to read out buffered<br/>data.</li> </ol> | <ol> <li>Estimate direction<br/>and core position.</li> <li>Reject events that<br/>are badly fit by model<br/>wavefront.</li> <li>Reject events from<br/>known key RFI<br/>directions.</li> <li>Reject events from<br/>airplane tracks.</li> <li>Confirm power LDF<br/>and polarization.</li> </ol> | Compare data to<br>simulations to<br>estimate:<br>energy<br>Xmax |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |                                                                  |

**FPGA** 

CPU



### Future Outlook

- Beam mapping to 1%
- Scintillators in subarray



## Summary of Upgrade

#### Before Upgrade

- Ryan Monroe demonstrated that radio-only detection is possible, with dedicated 40 hour observing run
- Reconstructed arrival directions
- Required special RFI-quiet times





- Real-time commensal observing mode of the array, thousands of cosmic rays per year
- Reconstruct Xmax and energy for composition study
- RFI mitigation with distant antennas